resumen
Abstract
In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed
[ver mas...]
dc.contributor.author | Larese, Monica Graciela | |
dc.contributor.author | Namias, Rafael | |
dc.contributor.author | Craviotto, Roque Mario | |
dc.contributor.author | Arango, Miriam Raquel | |
dc.contributor.author | Gallo, Carina Del Valle | |
dc.contributor.author | Granitto, Pablo Miguel | |
dc.date.accessioned | 2018-05-30T12:08:08Z | |
dc.date.available | 2018-05-30T12:08:08Z | |
dc.date.issued | 2014-01 | |
dc.identifier.issn | 0031-3203 | |
dc.identifier.other | https://doi.org/10.1016/j.patcog.2013.06.012 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0031320313002641 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12123/2512 | |
dc.description.abstract | In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition. | eng |
dc.format | application/pdf | es_AR |
dc.language.iso | eng | es_AR |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_AR |
dc.source | Pattern recognition 47 (1) : 158-168. (January 2014) | es_AR |
dc.subject | Leguminosas | es_AR |
dc.subject | Legumes | eng |
dc.subject | Nervaduras Foliares | es_AR |
dc.subject | Leaf Veins | eng |
dc.subject | Análisis de Imágenes | es_AR |
dc.subject | Image Analysis | eng |
dc.title | Automatic classification of legumes using leaf vein image features | es_AR |
dc.type | info:ar-repo/semantics/artículo | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type | info:eu-repo/semantics/publishedVersion | es_AR |
dc.description.origen | EEA Oliveros | es_AR |
dc.description.fil | Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina | es_AR |
dc.description.fil | Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina | es_AR |
dc.description.fil | Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina | es_AR |
dc.description.fil | Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina | es_AR |
dc.description.fil | Fil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina | es_AR |
dc.description.fil | Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina | es_AR |
dc.subtype | cientifico |
Files in this item
This item appears in the following Collection(s)
common