Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Santa FeEEA OliverosArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Santa Fe
- EEA Oliveros
- Artículos científicos
- Ver ítem
Automatic classification of legumes using leaf vein image features
Resumen
In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed
[ver mas...]
In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition.
[Cerrar]
Autor
Larese, Monica Graciela;
Namias, Rafael;
Craviotto, Roque Mario;
Arango, Miriam Raquel;
Gallo, Carina Del Valle;
Granitto, Pablo Miguel;
Fuente
Pattern recognition 47 (1) : 158-168. (January 2014)
Fecha
2014-01
ISSN
0031-3203
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Restringido
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)