Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login

Inta Digital

Repositorio InstitucionalBiblioteca Digital
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCIRN. Centro de Investigaciones de Recursos NaturalesInstituto de SuelosArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros e Institutos de Investigación
  • CIRN. Centro de Investigaciones de Recursos Naturales
  • Instituto de Suelos
  • Artículos científicos
  • View Item

Soil organic carbon, macro- and micronutrient changes in soil fractions with different lability in response to crop intensification

Abstract
Soils under no tillage have experienced unfavorable changes, mainly due to current agricultural practices that consist in monocultures that leave little residue cover. The inclusion of grass as cover crops during the winter season could be a sustainable strategy to increase crop intensification in sequences where soybean predominates, helping to maintain soil fertility, organic matter levels and enhance soil physical properties. The aim of this research [ver mas...]
Soils under no tillage have experienced unfavorable changes, mainly due to current agricultural practices that consist in monocultures that leave little residue cover. The inclusion of grass as cover crops during the winter season could be a sustainable strategy to increase crop intensification in sequences where soybean predominates, helping to maintain soil fertility, organic matter levels and enhance soil physical properties. The aim of this research was to evaluate the effects of 8 years of sustainable crop intensification (by increasing the proportion of cereals in crop rotations) on soil organic carbon, macro- and micronutrients associated with granulometric fractions of different lability in a Typic Argiudoll of the Rolling Pampa, Argentina. The experiment included two crop sequences commonly used in this area: soybean-soybean (S-S) and maize-soybean-wheat/soybean (M-S-W/S) combined with the inclusion of wheat (Triticum aestivum L.) as cover crop (CC) in winter. The intensification sequence indices (ISI) were 0.39, 0.69, 0.55 and 0.64 for S-S, S-CC-S, M-S-W/S and M-CC-S-W/S, respectively. The carbon measured in the coarse particulate fraction (Pcf) in the 0–5 cm soil depth was 3 times larger in S-CC-S than in S-S. Cropping intensity also modified N, S, P, Ca and Mn in the Pcf with no changes in Mg, K, Zn, Fe and Cu contents. Among the carbon fractions studied, only the carbon measured in the Pcf and the easy mineralizable carbon estimated by the soil respiration in the first soil layer (0–5 cm), were positively correlated with the ISI. In the present study, 8 years under sustainable crop intensification were sufficient to show changes in the mineral associated fraction (Maf). Increases in the C in the Maf in maize legume-based rotation, suggest SOC accumulation in more stable carbon pools. [Cerrar]
Thumbnail
Author
Romaniuk, Romina Ingrid;   Beltran, Marcelo Javier;   Brutti, Lucrecia Noemi;   Costantini, Alejandro Oscar;   Bacigaluppo, Silvina;   Sainz Rozas, Hernan Rene;   Salvagiotti, Fernando;  
Fuente
Soil and tillage research 181 : 136-143. (September 2018)
Date
2018
Editorial
Elsevier
ISSN
0167-1987
URI
http://hdl.handle.net/20.500.12123/2905
https://www.sciencedirect.com/science/article/pii/S0167198718303817?via%3Dihub
DOI
https://doi.org/10.1016/j.still.2018.04.014
Formato
pdf
Tipo de documento
artículo
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record