Mostrar el registro sencillo del ítem

resumen

Resumen
The process of building data analytics systems, including big data systems, is currently being investigated from various perspectives that generally focus on specific aspects, such as data security or privacy, to the detriment of an engineering perspective on systems development. To address this limitation, our proposal focuses on developing analytics systems through a reuse-based approach, including stages ranging from problem definition to results [ver mas...]
dc.contributor.authorBuccella, Agustina
dc.contributor.authorCechich, Alejandra
dc.contributor.authorGarrido, Walter
dc.contributor.authorMontenegro, Ayelen
dc.date.accessioned2026-02-13T14:05:38Z
dc.date.available2026-02-13T14:05:38Z
dc.date.issued2026-02
dc.identifier.issn2076-3417
dc.identifier.otherhttps://doi.org/10.3390/app16031650
dc.identifier.urihttp://hdl.handle.net/20.500.12123/25203
dc.identifier.urihttps://www.mdpi.com/2076-3417/16/3/1650
dc.description.abstractThe process of building data analytics systems, including big data systems, is currently being investigated from various perspectives that generally focus on specific aspects, such as data security or privacy, to the detriment of an engineering perspective on systems development. To address this limitation, our proposal focuses on developing analytics systems through a reuse-based approach, including stages ranging from problem definition to results analysis by identifying variations and building reusable, context-based assets. This study presents the reuse process by constructing two case studies that address the water table level prediction problem in two different contexts: the irrigated period and the non-irrigated period in the same study area. The objective of this study is to demonstrate the influence of context on the performance of widely used predictive models for this problem, including long short-term memory (LSTM), artificial neural networks (ANNs), and support vector machines (SVMs), as well as the potential for reusing the developed analytics system. Additionally, we applied the permutation feature importance (PFI) to determine the contribution of individual variables to the prediction. The results confirm that the same problem hypotheses yield different performance in each case in terms of coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean square error (MSE). They also show that the best-performing predictive models differ for some of the hypotheses (ANN in one case and LSTM in another), supporting the assumption that context can influence model selection and performance. Reusing assets allows for more efficient evaluation of these alternatives during development time, resulting in analytics systems that are more closely aligned with reality, while also offering the advantages of software system composition.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherMDPIes_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceApplied Sciences 16 (3) : 1650. (February 2026)es_AR
dc.subjectMacrodatoes_AR
dc.subjectBig Dataeng
dc.subjectAgua Subterráneaes_AR
dc.subjectGroundwatereng
dc.subjectAgricultura de Precisiónes_AR
dc.subjectPrecision Agricultureeng
dc.subjectProcesamiento de Datoses_AR
dc.subjectData Processingeng
dc.titleContextual Reuse of Big Data Systems: A Case Study Assessing Groundwater Recharge Influenceses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenEEA Alto Vallees_AR
dc.description.filFil: Buccella, Agustina. Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); Argentinaes_AR
dc.description.filFil: Cechich, Alejandra. Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); Argentinaes_AR
dc.description.filFil: Garrido, Walter. Universidad Nacional del Comahue. Facultad de Informática. Departamento de Ingeniería de Sistemas. Grupo de Investigación en Ingeniería de Software del Comahue (GIISCo); Argentinaes_AR
dc.description.filFil: Montenegro, Ayelen. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; Argentinaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess