Mostrar el registro sencillo del ítem

resumen

Resumen
Agro-industrial activities generate significant amounts of organic waste and a variety of effluents thus posing environmental challenges. Viticulture in Argentina, which covered 204,847 ha in 2023, faces water scarcity as a limiting factor conditioning its production. This industry produces large volumes of grape marc, sediments, and stalks, which can be valorised into products like alcohol, tartaric acid, and compost. However, these valorisation [ver mas...]
dc.contributor.authorRizzo, Pedro Federico
dc.contributor.authorAguado, German Dario
dc.contributor.authorFunes Pinter, Mariano Ivan
dc.contributor.authorMartinez, Laura Elizabeth
dc.contributor.authorFerrari, Florencia
dc.contributor.authorDe Biazi, Federico Sebastian
dc.contributor.authorMartín, Pablo
dc.contributor.authorFlores, Gustavo
dc.contributor.authorSánchez, Antoni
dc.contributor.authorUliarte, Ernesto Martin
dc.date.accessioned2025-02-10T12:50:42Z
dc.date.available2025-02-10T12:50:42Z
dc.date.issued2025-01
dc.identifier.issn2076-3417
dc.identifier.otherhttps://doi.org/10.3390/app15031435
dc.identifier.urihttp://hdl.handle.net/20.500.12123/21156
dc.identifier.urihttps://www.mdpi.com/2076-3417/15/3/1435
dc.description.abstractAgro-industrial activities generate significant amounts of organic waste and a variety of effluents thus posing environmental challenges. Viticulture in Argentina, which covered 204,847 ha in 2023, faces water scarcity as a limiting factor conditioning its production. This industry produces large volumes of grape marc, sediments, and stalks, which can be valorised into products like alcohol, tartaric acid, and compost. However, these valorisation processes generate effluents with high organic load and salinity, further stressing water resources. This study explores the potential of utilising these effluents to cultivate plant biomass in arid regions (sorghum or perennial pasture), which could serve as bioenergy, animal feed, or composting co-substrates, contributing to circular bioeconomy principles. The combined use of effluent as a water resource and the sowing of sorghum and pasture increased soil organic matter content and led to a slight reduction in pH (depth: 0.30–0.60 m) compared to the control treatment. The sorghum plots showed better establishment and higher dry biomass yield (32.6 Tn/ha) compared to the pasture plots (6.5 Tn/ha). Sorghum demonstrated better tolerance to saline soils and high salinity effluents, aligning with previous studies. Although pasture had a lower biomass yield, it was more efficient in nutrient uptake, concentrating more NPK, ash, and soluble salts. Sorghum’s higher yield compensated for its lower nutrient concentration. For biomass production, sorghum is preferable, but if nutrient capture from effluents is prioritised, summer polyphytic pastures are more suitable. These results suggest that the final selection between plant biomass alternatives highly depends on whether the goal is biomass generation or nutrient capture.eng
dc.formatapplication/pdfes_AR
dc.language.isospaes_AR
dc.publisherMDPIes_AR
dc.relationinfo:eu-repograntAgreement/INTA/2023-PD-L04-I122, Gestión de las biomasas del SAB y estrategias tecnológicas para su transformación en bioproductos de valor agregado
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceApplied Sciences 15 (3) : 1435. (January 2025)es_AR
dc.subjectBiomasa
dc.subjectBiomasseng
dc.subjectEfluentes
dc.subjectEffluentseng
dc.subjectBioenergía
dc.subjectBioenergyeng
dc.subjectIndustria del Vino
dc.subjectWine Industryeng
dc.subject.otherEfluentes de Destileríaes_AR
dc.subject.otherBioeconomía Circulares_AR
dc.titleEffluent from Winery Waste Biorefinery: A Strategic Input for Biomass Generation with Different Objectives to Add Value in Arid Regionses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenEEA Mendozaes_AR
dc.description.filFil: Rizzo, Pedro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentinaes_AR
dc.description.filFil: Aguado, Germán Darío. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentinaes_AR
dc.description.filFil: Funes-Pinter, Iván. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentinaes_AR
dc.description.filFil: Funes-Pinter, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. CCT Mendoza; Argentinaes_AR
dc.description.filFil: Martínez, Laura Elizabeth. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rama Caída; Argentina.es_AR
dc.description.filFil: Ferrari, Florencia Noemí. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentinaes_AR
dc.description.filFil: De Biazi, Federico. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentinaes_AR
dc.description.filFil: Pablo, Martín. Empresa DERVINSA SA; Mendoza, Argentina.es_AR
dc.description.filFil: Flores, Gustavo. Empresa DERVINSA SA; Mendoza, Argentina.es_AR
dc.description.filFil: Sánchez, Antoni. Universitat Autónoma de Barcelona, Departamento de Ingeniería Química, Grupo de Investigación en Compostaje; España.es_AR
dc.description.filFil: Uliarte, Ernesto Martín. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess