Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Santa FeEEA OliverosArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Santa Fe
- EEA Oliveros
- Artículos científicos
- Ver ítem
Modelo ‘‘cuanti-cualitativo’’ de escurrimiento superficial del agua en suelos agrícolas de la región Pampeana Argentina
Resumen
Desde hace mucho tiempo se está estudiando la modelación de la relación lluvia-escurrimiento y han sido desarrollados una gran cantidad de métodos y modelos para simular la generación de escurrimiento de una lluvia. Uno de los métodos ampliamente usados es el ‘‘Número de Curva’’ (NC) del Servicio de Conservación de Suelo de Estados Unidos, que tiene la dificultad de necesitar datos empíricos. Tanto éste, como todos los modelos de regresión producen
[ver mas...]
Desde hace mucho tiempo se está estudiando la modelación de la relación lluvia-escurrimiento y han sido desarrollados una gran cantidad de métodos y modelos para simular la generación de escurrimiento de una lluvia. Uno de los métodos ampliamente usados es el ‘‘Número de Curva’’ (NC) del Servicio de Conservación de Suelo de Estados Unidos, que tiene la dificultad de necesitar datos empíricos. Tanto éste, como todos los modelos de regresión producen resultados muy variables ante un mismo evento de lluvia. Por tal motivo, se planteó desarrollar un modelo cuanti-cualitativo, que ayude a disminuir esa variabilidad, sobre la base de un modelo de regresión cuantitativo ajustado para la Región Pampeana Argentina. Con el conjunto de datos cuantitativos se efectuó un análisis de regresión, y posteriormente se los asoció con datos cualitativos. El objetivo del análisis fue poder determinar valores medios de escurrimiento a partir de la cantidad de lluvia caída, la intensidad de la misma y la humedad superficial del suelo. Para estimar el escurrimiento en función de variables cuantitativas y cualitativas, se utilizó un modelo de regresión lineal múltiple con variables indicadoras. A partir del mismo se utilizó el proceso de selección de variables Backward, para seleccionar cuáles son las variables que deben quedar en el modelo. Para suelos Molisoles de aptitud agrícola en siembra directa de la Región Pampeana, la ecuación lineal obtenida de los datos observados, presenta un buen ajuste estadístico. Sin embargo, la variabilidad encontrada en valores de precipitación diaria entre los 40 y 80 mm, no es admisible para la estimación de balances hídricos de cultivos. Para los suelos mencionados, el modelo de regresión obtenido con variable cuantitativa y variables indicadoras cualitativas produce una mejora sustancial para la estimación del escurrimiento superficial.
[Cerrar]
Rainfall-runoff relationship modeling have been studied for a long time, developing along these period several methods and models to simulate rainfall-runoff event. One of the widely used methods is the ‘‘Curve Number’’ (CN) of the United States Soil Conservation Service which requires empiric data. This method as well as all regression models provides highly variable results for the same rainfall event. Therefore, in order to find a quantitative and
[ver mas...]
Rainfall-runoff relationship modeling have been studied for a long time, developing along these period several methods and models to simulate rainfall-runoff event. One of the widely used methods is the ‘‘Curve Number’’ (CN) of the United States Soil Conservation Service which requires empiric data. This method as well as all regression models provides highly variable results for the same rainfall event. Therefore, in order to find a quantitative and qualitative model that helps reduce these variability, a quantitative adjusted regression model for Argentine Pampa Region is proposed. It was performed a regression analysis with a set of quantitative data, subsequently became associated with qualitative data. The objective of the analysis was to determine runoff average values from both the quantity and intensity of rainfall, and the surface soil moisture. A multiple linear regression model with variable indicators was used to estimate runoff based on quantitative and qualitative variables. A Backward Selection process was used to select variables that should be in the model. The linear equation obtained from the observed data, for non-tillage Mollisols with agricultural aptitude of the Pampa Region with slopes less than 1%, had good statistical adjustment. However, the variability found in daily precipitation values between 40 and 80 mm, is not suitable for estimating crop water balances. In summary, the soil described showed that the regression model with quantitative and qualitative indicator variables produces a substantial improvement for surface runoff estimation
[Cerrar]
Fuente
Ciencia del Suelo 34 (2) : 293-301 (dic. 2016)
Fecha
2016-12
ISSN
0326-3169
1850-2067
1850-2067
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Abierto
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)