Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Patagonia NorteEEA Alto ValleArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Patagonia Norte
- EEA Alto Valle
- Artículos científicos
- Ver ítem
Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis
Resumen
Yield forecasting depends on accurate tree fruit counts and mean size estimation. This information is generally obtained manually, requiring many hours of work. Artificial vision emerges as an interesting alternative to obtaining more information in less time. This study aimed to test and train YOLO pre-trained models based on neural networks for the detection and count of pears and apples on trees after image analysis; while also estimating fruit size.
[ver mas...]
Yield forecasting depends on accurate tree fruit counts and mean size estimation. This information is generally obtained manually, requiring many hours of work. Artificial vision emerges as an interesting alternative to obtaining more information in less time. This study aimed to test and train YOLO pre-trained models based on neural networks for the detection and count of pears and apples on trees after image analysis; while also estimating fruit size. Images of trees were taken during the day and at night in apple and pear trees while fruits were manually counted. Trained models were evaluated according to recall, precision and F1score. The correlation between detected and counted fruits was calculated while fruit size estimation was made after drawing straight lines on each fruit and using reference elements. The precision, recall and F1score achieved by the models were up to 0.86, 0.83 and 0.84, respectively. Correlation coefficients between fruit sizes measured manually and by images were 0.73 for apples and 0.80 for pears. The proposed methodologies showed promising results, allowing forecasters to make less time-consuming and accurate estimates compared to manual measurements.
[Cerrar]
Para pronosticar la producción es necesario contar el número de frutos de los árboles y estimar el tamaño medio. Esta información se obtiene manualmente y requiere mucha mano de obra experimentada. La visión artificial surge como alternativa para obtener más información en menos tiempo. Los objetivos del trabajo fueron entrenar modelos de visión artificial para detectar y contar el número de peras y
[ver mas...]
Para pronosticar la producción es necesario contar el número de frutos de los árboles y estimar el tamaño medio. Esta información se obtiene manualmente y requiere mucha mano de obra experimentada. La visión artificial surge como alternativa para obtener más información en menos tiempo. Los objetivos del trabajo fueron entrenar modelos de visión artificial para detectar y contar el número de peras y manzanas en árboles a partir de imágenes; y medir diámetros de frutos en imágenes. Se usaron modelos pre-entrenados para detección de objetos basados en redes neuronales (YOLO). Se tomaron imágenes de árboles de día y de noche, y los frutos de cada planta fueron contados manualmente. Los modelos se evaluaron según sensibilidad, precisión y F1score; y se calculó la correlación entre frutos detectados y contados. La estimación de diámetros se realizó trazando líneas rectas sobre cada fruto y utilizando elementos de referencia. La precisión, sensibilidad y F1score alcanzados por los modelos fueron 0,86, 0,83 y 0,84, respectivamente. Las correla-ciones entre diámetros medidos manualmente y por imágenes fueron de 0,73 en manzanas y 0,80 en peras. Las metodologías propuestas permitieron realizar estimaciones a partir de imágenes con una precisión aceptable y en menor tiempo respecto de las mediciones manuales.
[Cerrar]
Autor
Del Brio, Dolores;
Tassile, Valentin;
Bramardi, Sergio Jorge;
Fernandez, Dario Eduardo;
Reeb, Pablo Daniel;
Fuente
Revista de la Facultad de Ciencias Agrarias / Universidad Nacional de Cuyo 55 (2) : 1-11 (2023)
Fecha
2023-12
Editorial
Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo
ISSN
1853-8665
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Abierto
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)