Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Entre RíosEEA ParanáArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Entre Ríos
- EEA Paraná
- Artículos científicos
- Ver ítem
The allometric relationships between biomass and nitrogen of vegetative organs affect crop N status in maize at silking stage
Resumen
In maize (Zea mays, L.) changes in the partitioning of biomass (W) and nitrogen (N) between organs linked to photosynthetically active tissues, such as leaves (with high N concentration, %N) and organs related to supporting functions, such as stems (with low %N) at silking stage, could modify the diagnosis of crop N status (i.e., N nutrition index, NNI) for fertilizer N recommendations. To test this hypothesis we used a database of maize measurements
[ver mas...]
In maize (Zea mays, L.) changes in the partitioning of biomass (W) and nitrogen (N) between organs linked to photosynthetically active tissues, such as leaves (with high N concentration, %N) and organs related to supporting functions, such as stems (with low %N) at silking stage, could modify the diagnosis of crop N status (i.e., N nutrition index, NNI) for fertilizer N recommendations. To test this hypothesis we used a database of maize measurements performed at silking stage of crops cultivated under different N fertilization rates, plant densities, hybrids, and sowing dates, to investigate i) the allometric relationships between %N and W of leaves (%NL and WL) and stems (%NS and WS), ii) changes in N uptake in vegetative organs for crops with low (<6700 kg ha−1) and high (>6700 kg ha−1) crop W and contrasting NNIs, iii) the responses of crop W at silking stage to N fertilization relative to responses of WL, WS, %NL and %NS, and iv) the inclusion of the %NL/%NS ratio in a predictive model of relative grain yield based on crop NNI at silking. Variations of WS (from 2143 to 10,067 kg ha−1) were greater than those of WL (from 1010 to 4107 kg ha−1), whereas the values of WL/WS ratio (for low W crops) and leaf/stem ratio for N uptake (for both high and low W crops) were lower for NNI> 1.1 than for NNI< 0.9, reflecting the key role of stems as N storage organs when N is non-limiting. Changes in WS largely modulate the response of crop W to N fertilization, while changes in %NL largely modulated the response of crop %N to N fertilization for high W crops. Optimal crop N status (i.e., NNI=∼1) was attained with a greater %NL/%NS ratio for high (2.0) than for low (1.2) W crops, suggesting that this allometric ratio should be taken into account at this crop growth stage, particularly for low crop W. Accordingly, the prediction of relative grain yield based on NNI at silking was improved by the inclusion of %NL/%NS. Therefore, our results are useful to better understand the response of maize crop W, grain yield, and crop %N (for leaves and stems) to late N fertilization, adding valuable insights to improve current NNI-based N diagnostic tools.
[Cerrar]
Autor
Maltese, Nicolás;
Maddonni, Gustavo Angel;
Melchiori, Ricardo Jose;
Ciampitti, Ignacio A.;
Caviglia, Octavio;
Fuente
Field Crops Research 294 : 108861. (April 2023)
Fecha
2023-04
Editorial
Elsevier
ISSN
0378-4290
1872-6852
1872-6852
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Restringido
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)