Ver ítem
- xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCICVyA. Centro de Investigación en Ciencias Veterinarias y AgronómicasInstituto de GenéticaPresentaciones a Congresosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros e Institutos de Investigación
- CICVyA. Centro de Investigación en Ciencias Veterinarias y Agronómicas
- Instituto de Genética
- Presentaciones a Congresos
- Ver ítem
Relevant loci for milk production in dairy cattle, obtained by machine learning algorithms
Resumen
Background: Extensive genetic research focused on identifyng associations between single nucleotide polymorphism (SNP) markers located all over the genome and milk traits were conducted for different dairy cattle breeds. Most published genome-wide association studies (GWAS) were performed fitting linear, multivariate and Bayesian linear mixed models.
Machine learning (ML) methods have been shown to be efficient in identifying SNP underlying a trait of
[ver mas...]
Background: Extensive genetic research focused on identifyng associations between single nucleotide polymorphism (SNP) markers located all over the genome and milk traits were conducted for different dairy cattle breeds. Most published genome-wide association studies (GWAS) were performed fitting linear, multivariate and Bayesian linear mixed models.
Machine learning (ML) methods have been shown to be efficient in identifying SNP underlying a trait of interest.
[Cerrar]
Autor
Descripción
Poster
Fuente
2nd Women in Bioinformatics & Data Science Latin America Conference, 22 al 24 de septiembre de 2021 (virtual)
Fecha
2021-09
Editorial
Network of Women in Bioinformatics and Data Science
Documentos Relacionados
Formato
pdf
Tipo de documento
documento de conferencia
Proyectos
(ver más)
INTA/2019-PE-E6-I145-001/2019-PE-E6-I145-001/AR./Mejora genética objetiva para aumentar la eficiencia de los sistemas de producción animal.
INTA/2019-PT-E6-I513-001/2019-PT-E6-I513-001/AR./Plataforma de mejoramiento animal
INTA/2019-PT-E9-I180-001/2019-PT-E9-I180-001/AR./TICs y gestión de Big Data
Palabras Claves
Derechos de acceso
Abierto
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)