Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Santa FeEEA OliverosArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Santa Fe
- EEA Oliveros
- Artículos científicos
- Ver ítem
Contribution of different sources and origins of nitrogen in above- and below-ground structures to the partial nitrogen balance in soybean
Resumen
Aims: Most studies that quantified the biological N fixation (BNF) and partial N balances of soybean have ignored the belowground structures. Our objectives were to evaluate the contribution of belowground structures to the partial N balance of soybean and to identify the origin (soil or BNF) and source (apparent remobilization or current gain during the seed-filling period) of seed N.
Methods: Biomass, BNF, and N uptake coming from different N sources
[ver mas...]
Aims: Most studies that quantified the biological N fixation (BNF) and partial N balances of soybean have ignored the belowground structures. Our objectives were to evaluate the contribution of belowground structures to the partial N balance of soybean and to identify the origin (soil or BNF) and source (apparent remobilization or current gain during the seed-filling period) of seed N.
Methods: Biomass, BNF, and N uptake coming from different N sources and origins, including belowground structures, were quantified in a two-year field study involving two soybean genotypes (MG IV and V) and two water availability conditions (rainfed and irrigated).
Results: The inclusion of BNF-derived N present in belowground components (which averaged +12 kg N ha−1 at R7) changed the results of the partial N balances from negative to positive. BNF was the main origin of seed N, accounting for 73 and 79% of seed N under water stressed and non-stressed conditions, respectively. Regarding the seed N source, apparent remobilization was the main contributor to seed N under water stress, whereas current N gain was the main contributor to seed N in unstressed plants.
Conclusions: We conclude that i) the root system retains a relevant proportion of the atmospheric N fixed during the crop cycle and should be included in the partial N balance estimations; and ii) BNF is the main origin of seed N, even under contrasting growing conditions.
[Cerrar]
Autor
Kehoe, Esteban;
Rubio, Gerardo;
Salvagiotti, Fernando;
Fuente
Plant and Soil (Published: 15 April 2022)
Fecha
2022-04
Editorial
Springer
ISSN
0032-079X
1573-5036
1573-5036
Documentos Relacionados
Formato
pdf
Tipo de documento
artículo
Proyectos
(ver más)
INTA/PNCYO-1127033/AR./Manejo nutricional de cereales y oleaginosas para la intensificación sustentable de los sistemas productivos
INTA/2019-PE-E1-I011-001/2019-PE-E1-I011-001/AR./Intensificacion Sustentable de la Agricultura en la Region Pampeana
Palabras Claves
Derechos de acceso
Restringido
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)