Mostrar el registro sencillo del ítem

resumen

Resumen
The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we [ver mas...]
dc.contributor.authorSteidinger, B. S.
dc.contributor.authorCrowther, T. W.
dc.contributor.authorLiang, J.
dc.contributor.authorVan Nuland, M. E.
dc.contributor.authorWerner, G. D. A.
dc.contributor.authorReich, P. B.
dc.contributor.authorNabuurs, G.
dc.contributor.authorde-Miguel, S.
dc.contributor.authorZhou, M.
dc.contributor.authorPicard, N.
dc.contributor.authorHerault, B.
dc.contributor.authorZhao, X.
dc.contributor.authorZhang, C.
dc.contributor.authorRouth, D.
dc.contributor.authorPeri, Pablo Luis
dc.date.accessioned2021-03-22T17:26:14Z
dc.date.available2021-03-22T17:26:14Z
dc.date.issued2019-05-15
dc.identifier.citationSteidinger, B.S., Crowther, T.W., Liang, J. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019). https://doi.org/10.1038/s41586-019-1128-0es_AR
dc.identifier.issn1476-4687 (online)
dc.identifier.otherhttps://doi.org/10.1038/s41586-019-1128-0
dc.identifier.urihttp://hdl.handle.net/20.500.12123/8952
dc.identifier.urihttps://www.nature.com/articles/s41586-019-1128-0
dc.description.abstractThe identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherSpringer Naturees_AR
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_AR
dc.sourceNature 569 (7756) : 404-408. (May 2019)es_AR
dc.subjectForestseng
dc.subjectBosqueses_AR
dc.subjectMicrobial Floraeng
dc.subjectFlora Microbianaes_AR
dc.subjectNutrientseng
dc.subjectNutrienteses_AR
dc.subjectSoileng
dc.subjectSueloes_AR
dc.subjectCarboneng
dc.subjectCarbonoes_AR
dc.subjectNitrogeneng
dc.subjectNitrógenoes_AR
dc.subjectClimate Changeeng
dc.subjectCambio Climáticoes_AR
dc.subjectForest Ecosystemseng
dc.subjectEcosistemas Forestaleses_AR
dc.subjectEnvironmental Factorseng
dc.subjectFactores Ambientaleses_AR
dc.subjectDescompositioneng
dc.subjectDescomposiciónes_AR
dc.subjectArbuscular Mycorrhizaeng
dc.subjectMicorrizas Arbusculareses_AR
dc.subject.otherClimatic Controleng
dc.subject.otherControl Climáticoes_AR
dc.subject.otherDescomposition Driveeng
dc.subject.otherControl de la Descomposiciónes_AR
dc.subject.otherTree Symbioseseng
dc.subject.otherSimbiosis Arbóreaes_AR
dc.titleClimatic controls of decomposition drive the global biogeography of forest tree symbioseses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.description.origenEEA Santa Cruzes_AR
dc.description.filFil: Steidinger, B. S. Stanford University. Department of Biology; Estados Unidoses_AR
dc.description.filFil: Crowther, T. W. ETH Zürich, Department of Environmental Systems Science; Suizaes_AR
dc.description.filFil: Liang, J. Purdue University. Department of Forestry and Natural Resources; Estados Unidoses_AR
dc.description.filFil: Liang, J. Beijing Forestry University. Research Center of Forest Management Engineering of State Forestry and Grassland Administration; China.es_AR
dc.description.filFil: Van Nuland, M. E. Stanford University. Department of Biology; Estados Unidoses_AR
dc.description.filFil: Werner, G. D. A. University of Oxford. Department of Zoology; Reino Unidoes_AR
dc.description.filFil: Reich, P. B. University of Minnesota. Department of Forest Resources; Estados Unidoses_AR
dc.description.filFil: Reich, P. B. Western Sydney University. Hawkesbury Institute for the Environment; Australia.es_AR
dc.description.filFil: Nabuurs, G. Wageningen University and Research; Holandaes_AR
dc.description.filFil: de-Miguel, S. Universitat de Lleida. Department of Crop and Forest Sciences - Agrotecnio Center (UdL-Agrotecnio); Españaes_AR
dc.description.filFil: de-Miguel, S. Forest Science and Technology Centre of Catalonia (CTFC); Españaes_AR
dc.description.filFil: Zhou, M. Purdue University. Department of Forestry and Natural Resources; Estados Unidoses_AR
dc.description.filFil: Picard, N. Food and Agriculture Organization of the United Nations; Italiaes_AR
dc.description.filFil: Herault, B. University of Montpellier. Cirad, UPR Forêts et Sociétés; Franciaes_AR
dc.description.filFil: Herault, B. National Polytechnic Institute (INP-HB). Department of Forestry and Environment. Yamoussoukro; Costa de Marfiles_AR
dc.description.filFil: Zhao, X. Beijing Forestry University. Research Center of Forest Management Engineering of State Forestry and Grassland Administration; China.es_AR
dc.description.filFil: Zhang, C. Beijing Forestry University. Research Center of Forest Management Engineering of State Forestry and Grassland Administration; China.es_AR
dc.description.filFil: Routh, D. ETH Zürich, Department of Environmental Systems Science; Suizaes_AR
dc.description.filFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.es_AR
dc.description.filFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.es_AR
dc.description.filFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.es_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem