Mostrar el registro sencillo del ítem

resumen

Resumen
We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing [ver mas...]
dc.contributor.authorBrambilla, Silvina Maricel
dc.contributor.authorSoto, Gabriela
dc.contributor.authorOdorizzi, Ariel
dc.contributor.authorArolfo, Valeria
dc.contributor.authorMcCormick, Wayne
dc.contributor.authorPrimo, Emiliano
dc.contributor.authorGiordano, Walter
dc.contributor.authorJozefkowicz, Cintia
dc.contributor.authorAyub, Nicolás Daniel
dc.date.accessioned2020-08-04T11:39:43Z
dc.date.available2020-08-04T11:39:43Z
dc.date.issued2020
dc.identifier.issn0095-3628
dc.identifier.issn1432-184X
dc.identifier.otherhttps://doi.org/10.1007/s00248-019-01473-w
dc.identifier.urihttp://hdl.handle.net/20.500.12123/7665
dc.identifier.urihttps://link.springer.com/article/10.1007/s00248-019-01473-w
dc.description.abstractWe have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1–6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (−ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4–6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherSpringeres_AR
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_AR
dc.sourceMicrobial Ecology 79 : 1044–1053 (2020)es_AR
dc.subjectMedicago sativaes_AR
dc.subjectÓxido Nitrosoes_AR
dc.subjectNitrous Oxideeng
dc.subjectInoculaciónes_AR
dc.subjectInoculationeng
dc.subjectNitrato Reductasaes_AR
dc.subjectNitrate Reductaseeng
dc.subjectGeneseng
dc.subjectRhizobiaceaees_AR
dc.subjectFactores Climáticoses_AR
dc.subjectClimatic Factorseng
dc.subject.otherAlfalfaes_AR
dc.subject.otherLucerneeng
dc.subject.otherSinorhizobium meliloties_AR
dc.titleSpontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climateses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.description.origenInstituto de Biotecnologíaes_AR
dc.description.filFil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina.es_AR
dc.description.filFil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina.es_AR
dc.description.filFil: Odorizzi, Ariel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentinaes_AR
dc.description.filFil: Arolfo, Valeria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentinaes_AR
dc.description.filFil: McCormick, Wayne. Ottawa Research and Development Centre; Canadáes_AR
dc.description.filFil: Primo, Emiliano. Universidad Nacional de Río Cuarto. Departamento de Biología Molecular; Argentinaes_AR
dc.description.filFil: Giordano, Walter. Universidad Nacional de Río Cuarto. Departamento de Biología Molecular; Argentinaes_AR
dc.description.filFil: Jozefkowicz, Cintia . Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentina.es_AR
dc.description.filFil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular e Instituto de Genética; Argentines_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem