Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCIAP. Centro de Investigaciones AgropecuariasInstituto de Fisiología y Recursos Genéticos VegetalesArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros e Institutos de Investigación
  • CIAP. Centro de Investigaciones Agropecuarias
  • Instituto de Fisiología y Recursos Genéticos Vegetales
  • Artículos científicos
  • View Item

Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone

Abstract
Reduced hydraulic conductance calculated from growth data was suggested to be the main reason for reduced leaf expansion in salt-stressed Chloris gayana (Rhodes grass). In this work, xylem vessel cross-sections and wall enzyme activities were analysed to re-examine the effects of salinity on leaf growth in this species. Maximal segmental growth rates were 20% lower and the growth zone was 23% shorter in leaves from salinized plants than in controls; [ver mas...]
Reduced hydraulic conductance calculated from growth data was suggested to be the main reason for reduced leaf expansion in salt-stressed Chloris gayana (Rhodes grass). In this work, xylem vessel cross-sections and wall enzyme activities were analysed to re-examine the effects of salinity on leaf growth in this species. Maximal segmental growth rates were 20% lower and the growth zone was 23% shorter in leaves from salinized plants than in controls; however, growth rates between 0 mm and 15 mm from the ligule were similar in both types of leaves. Xylem cross-sectional areas in this region were about 65% smaller in leaves of salinized plants, suggesting that hydraulic restrictions in the leaves of salinized plants were much higher than overall growth reductions. Extractable xyloglucan endotransglucosylase activity in this zone was twice as high in leaves of salinized plants as in leaves of controls. Nevertheless, the activity of the extracted enzyme was not affected by up to 1 M NaCl added to the reaction medium. Therefore, increased xyloglucan endotransglucosylase activity under salinity may be due to a promotion of transcription of XTH (xyloglucan endotransglucosylase/hydrolases) genes and/or translation of preformed transcripts. These results suggest that, as in drought stress, increased activity of cell wall enzymes associated with wall loosening may contribute to the maintenance of growth under saline conditions despite hydraulic restrictions. [Cerrar]
Thumbnail
Author
Ortega, Leandro Ismael;   Fry, Stephen C.;   Taleisnik, Edith;  
Fuente
Journal of Experimental Botany 57 (14) : 3945–3952. (November 2006)
Date
2006-11
Editorial
Society for Experimental Biology
ISSN
0022-0957
1460-2431
URI
http://hdl.handle.net/20.500.12123/7449
https://academic.oup.com/jxb/article/57/14/3945/587712
DOI
https://doi.org/10.1093/jxb/erl168
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Chloris gayana; Peroxídasas; Peroxidases; Estrés Osmótico; Osmotic Stress; Xilema; Xylem; Grama Rhodes; Rhodes Grass; Estrés Salino;
Derechos de acceso
Abierto
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record