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Why are Chloris gayana leaves shorter in salt-affected
plants? Analyses in the elongation zone
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Abstract

Reduced hydraulic conductance calculated from

growth data was suggested to be the main reason for

reduced leaf expansion in salt-stressed Chloris gayana

(Rhodes grass). In this work, xylem vessel cross-

sections and wall enzyme activities were analysed to

re-examine the effects of salinity on leaf growth in this

species. Maximal segmental growth rates were 20%

lower and the growth zone was 23% shorter in leaves

from salinized plants than in controls; however, growth

rates between 0 mm and 15 mm from the ligule were

similar in both types of leaves. Xylem cross-sectional

areas in this region were about 65% smaller in leaves of

salinized plants, suggesting that hydraulic restrictions

in the leaves of salinized plants were much higher than

overall growth reductions. Extractable xyloglucan endo-

transglucosylase activity in this zone was twice as high

in leaves of salinized plants as in leaves of controls.

Nevertheless, the activity of the extracted enzyme was

not affected by up to 1 M NaCl added to the reaction

medium. Therefore, increased xyloglucan endotrans-

glucosylase activity under salinity may be due to

a promotion of transcription of XTH (xyloglucan endo-

transglucosylase/hydrolases) genes and/or translation

of preformed transcripts. These results suggest that,

as in drought stress, increased activity of cell wall

enzymes associated with wall loosening may contrib-

ute to the maintenance of growth under saline con-

ditions despite hydraulic restrictions.
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Introduction

Rhodes grass (Chloris gayana Kunth) is a widely used
forage grass, recognized for its salt tolerance (Bogdan,
1969); nevertheless, its yield in saline soils is significantly
reduced (Pérez et al., 1999), owing to reductions in leaf
area expansion and an increased proportion of dead leaves
(de Luca et al., 2001). In grasses, leaf blade growth is
restricted to the expanding zone (EZ) in the lamina base.
Very early in leaf development the intercalary meristem
subdivides into two meristems that give rise, first to the
lamina and, later, to the sheath (Fricke, 2002). The profile
of growth rates along the blade EZ remains constant during
the linear phase of leaf elongation (Muller et al., 2001).
Salt-affected C. gayana plants had shortened blade growth
zones and decreased growth rates within it (Ortega and
Taleisnik, 2003). As elongation growth results from
irreversible cell enlargement determined by the rate of
water uptake and the plastic properties of the cell wall, the
present work examines how these aspects are affected by
salinity in this species.

Salinity and water stress often result in reduced
hydraulic conductance in plants (Peyrano et al., 1997;
Steudle, 2000). When this parameter was calculated from
growth data, it was suggested to be, among other causes,
the main reason for reduced leaf expansion in salt-stressed
C. gayana (Ortega and Taleisnik, 2003). This conclusion
seems logical; nevertheless, additional information from
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growth-independent variables is required to validate it.
Axial hydraulic conductivity can be calculated from the
cross-sectional area of xylem vessels, and these estimations
are consistent with the actual measured hydraulic conduc-
tivity (Martre et al., 2000). In this work, the cross-section
of the xylem vessels was used to re-examine the effect of
salinity on hydraulic conductance in C. gayana.

If hydraulic constraints are the main cause for salinity-
associated leaf growth reductions in C. gayana, it is
expected that sustained leaf elongation under such con-
ditions would require increased cell wall-loosening activ-
ities. Conceptually, cell elongation requires a positive
balance between loosening and tightening of the wall
polysaccharide matrix. That balance defines regions of
accelerating and decelerating growth within the grass leaf
growth zone (Muller et al., 2001), and the resulting typical
tailed-bell shape of growth rate distribution within it
(Volenec and Nelson, 1981; Bernstein et al., 1993). While
the effects of environmental stress on cell wall tightening
have been the subject of many studies (Cramer and
Bowman, 1991; Botella et al., 1994; Cosgrove, 1997;
Peyrano et al., 1997; Wang et al., 1997; Ma et al., 2004),
information relating salinity and wall loosening mech-
anisms is relatively scarce.

Cell wall loosening and tightening results from the action
of enzymes and reactive oxygen species (Cosgrove, 1999;
Schopfer, 2001; Fry, 2004). Several proteins have been
directly implicated in cell wall loosening, among them
xyloglucan endotransglucosylase/hydrolases (XTHs) (Fry
et al., 1992; Rose et al., 2003; Nishitani, 2005), expansins
(McQueen-Mason and Cosgrove, 1995; Cosgrove, 1999),
and yieldins (Okamoto-Nakazato et al., 2001), while
others, like glucanases, which mediate the hydrolytic
degradation of the hemicellulose mixed-linkage b-glucan
(Huber and Nevins, 1982) have been postulated to have
a synergistic role for the action of the former ones
(Cosgrove, 1997; Peña et al., 1999). XTH proteins are
responsible for xyloglucan endotransglucosylase (XET)
activity, catalysing the cutting and rejoining of xyloglucan
chains (Fry et al., 1992), and thus facilitating the slippage
of microfibrils within the polysaccharide matrix of the cell
wall as cells expand in volume. The expression pattern of
an XTH transcript followed the distribution of growth rates
in the growing zone of Festuca pratensis and the resulting
XET activity was proposed to be involved in cell wall
modification processes during cell elongation (Reidy et al.,
2001). XET activity was enhanced in the apical region of
maize roots from plants grown under low water potentials
(Pritchard et al., 1993; Wu and Cosgrove, 2000; Wu et al.,
2005), and suggested to be necessary for maintaining
elongation under these conditions. This activity is strongly
dependent on the ionic environment and the presence of
anionic polysaccharides (Takeda and Fry, 2004). Thus, it is
likely to be affected by the apoplastic ionic environment
prevailing in plants grown under salinity.

Processes related to maturation and arrest of growth
prevail in the growth-decelerating region of the EZ. Cell
wall peroxidase activity (Fry, 1986; McDougall, 1992; Fry
et al., 2000) and action (Kerr and Fry, 2004; Encina and
Fry, 2005) have often been associated with cell wall
tightening. In Lolium temulentum under drought stress,
shortening of the EZ and the retardation of leaf growth were
associated with increased ionically bound peroxidase
activity (Bacon et al., 1997). In a gibberellin-unresponsive
dwarf mutant of maize, leaf elongation zones are shorter
than in the wild type because of reduced final cell length,
and apoplastic peroxidase activity and isoforms were very
closely related to this profile (Souza and MacAdam, 2001).

Results from the present work confirm the relevance of
hydraulic constraints to leaf growth in saline conditions
and show that salinity may stimulate the production of cell
wall-loosening XET activity.

Materials and methods

Plant material and growth conditions

Rhodes grass (Chloris gayana K. cv. Boma) caryopses were soaked
overnight in running tap water and later sown on moist vermiculite in
plastic trays. Upon germination, plantlets were transferred to
hydroponic trays (3.5 l) with half-strength Hoagland solution, in
a naturally illuminated greenhouse. The solution was changed twice
a week, and it was not aerated. When two leaves were visible above
the sheath whorl, the solution in the trays was gradually supple-
mented with NaCl (in three successive increments, every 3–4 d)
until a concentration of 200 mM was reached. Leaf 5, which was
visible above the sheath whorl 3 d after reaching the final salt
concentration and, thus, had elongated under salinity in stress
treatments, was chosen for this study. Leaves from non-salinized
plants are called CL and those from treated plants, SL.

Growth rates along the EZ

The anatomical method for inferring growth rates has been proposed
as a useful alternative to the analysis of the displacement of marks in
organs, such as monocot leaves (enclosed within the whorl of older
leaves), where marking may perturb the normal growth pattern (Silk
et al., 1989), and it has been suggested that it provides a more
accurate description of growth distribution. Five leaves from each
treatment, at the linear elongation phase, were selected on the second
day after appearance from the whorl, and freed from older enclosing
leaves under a stereomicroscope. A transparent negative film of the
abaxial epidermis was obtained from a thin nail varnish layer spread
on the rolled leaf surface. Films were carefully removed with forceps,
placed between a glass slide and cover slip and examined under
a microscope at a magnification of 3400. Digital images were
analysed with image-processing software (Optimas 6.1; Optimas
Corporation, Bothell, WA, USA). Ten to thirty cells on both sides
of the midrib were measured at 5 mm intervals in each leaf.
Measurements were performed on interstomatal cells where trans-
verse cell walls were most easily identified. Growth parameters were
calculated from cell length according to Silk et al. (1989). Cellochron
(the time interval during which a new cell is added to a cell file at
the base of the EZ) was calculated as the ratio of mature cell length to
leaf elongation rate for the day of leaf sampling. The reciprocal of this
value, termed cell flux (f), i.e. the number of cells passing a given point
per unit time, along with cell lengths (l), were used to compute local
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velocity of displacement (v) in the formula: v=f 3 l. A three-param-
eter sigmoid function was fitted to individual plots of cell lengths
versus position along the leaf blade, and differentiated using a five-
point derivative formula (Erickson and Sax, 1956) to obtain the strain
rate R = f 3 (dl/dx), where x is the distance from the ligule.

Leaf zones sampled in this study

The leaf blade extension zone (EZ) comprised the 70 mm from the
ligule in control plants, and 50 mm in salinized ones. The zone of
accelerating growth (AZ) spanned a maximum of 25 mm from the
ligule in controls and 15 mm in salinized plants. The decelerating
growth zone (DZ) was the 20 mm segment starting at either 30 mm
from the ligule in control plants or 20 mm in salinized ones.
Expanded leaf blade samples were obtained beyond 70 mm in both
control and salinized plants.

Xylem lumen measurements

Three representative plants of each treatment were excised at the
root–shoot junction, the EZ of leaf 5 was exposed and free-hand
cross-sections were obtained with a razor blade at 5, 10, 20, and
70 mm above the ligule. The lumen area of all vessels was meas-
ured in digital images taken under a fluorescence microscope at a
magnification of 3400 as described by Martre et al. (2000).

Cell wall autofluorescence

Cell wall autofluorescence under UV light is indicative of wall
phenolics, such as ferulic or p-coumaric acid or of lignin (Harris and
Hartley, 1976; Fukazawa and Imagawa, 1981). Free-hand cross-
sections of the EZ, obtained at various distances above the ligule,
were mounted on microscope slides with 50% glycerol (pH 6.5). The
intensity of blue autofluorescence was measured as bright intensity
by luminance determination on digitized images using Adobe
Photoshopª software.

Peroxidase activity determination and isoform

isoelectrofocusing

Samples for peroxidase activity were processed according to Quiroga
et al. (2000) with modifications. Segments (20 mm) from the AZ
and DZ regions of the EZ (100 mg) were ground with a mortar and
pestle, on ice, with 50 mM K-phosphate buffer, pH 6, and 0.2%
polyvinylpyrrolidone. After 30 min centrifugation at 3500 g the
supernatant was assayed for peroxidase activity using o-dianisidine
(Quesada et al., 1990). The pellet was extensively washed with more
K-phosphate buffer until no peroxidase activity was detected in the
supernatant. Ionically bound peroxidases were extracted by incubat-
ing this pellet in 50 mM phosphate buffer, pH 6, containing 1 M KCl
for 2 h. The supernatant was dialysed overnight against 25 mM K
phosphate buffer, pH 6. As for the soluble peroxidase extract, activity
was assayed with o-dianisidine. Protein content was determined
according to Bradford (1976) with bovine serum albumin as standard.
Isoelectric focusing of these ionically bound peroxidase isozymes
was performed by non-denaturing 7.5% PAGE; samples were run for
150 min at 2 mA on a pH range of 3.0–10 on vertical polyacrylamide
gel slabs (Robertson et al., 1987). Gels were stained for peroxidase
activity with benzidine as described by Forchetti and Tigier (1990).

XET activity

This assay was performed according to Fry et al. (1992). Ten to three
hundred milligrams of freeze-dried AZs or expanded laminae were
homogenized in 300 mM succinate buffer, pH 5.5, containing 10 mM
CaCl2 and 10% glycerol, and centrifuged in a bench-top centrifuge.
Ten microlitres of the resulting supernatant were added to a reaction
mixture (20 ll) containing tamarind xyloglucan (0.5%, w/v), 0.5%
chlorobutanol, and 50 kBq ml�1 [3H]XXXGol (radiolabelled xylo-

glucan oligosaccharide; for nomenclature, see Fry et al., 1993). The
reaction was stopped by addition of 30 ll 30% formic acid. This
mixture was dried on Whatman 3MM paper (333 cm) and washed
with running tap water overnight. After drying, incorporated
[3H]XXXGol was assayed by scintillation counting.

Cell wall autolytic activity

Frozen isolated EZs (200–300 mg FW) were processed according to
Inouhe and Nevins (1991) and transferred to chromatography
columns. Wall autolytic activity was measured as sugars released
from walls incubated in 20 mM K-citrate buffer at 37 8C. Controls
were done by immersion of columns in boiling water for 5 min to
inactivate any enzyme activity. Total soluble carbohydrates released
into the buffer in the columns were determined by the phenol–
sulphuric acid method (Dubois et al., 1956).

Results and discussion

Salinity effects on growth rates in the leaf
elongation zone

Growth of leaf 5 in C. gayana seedlings was followed on
a daily basis until complete leaf expansion. In control
plants, final leaf length was 28.960.9 cm by day 8 after
appearance from the enclosing sheaths, and, in salinized
plants, it reached 2061.4 cm 1–2 d after leaves from
control plants had ceased growing (Fig. 1). The phyllo-
chron, the time interval between two successive leaves, was
increased from 2.3 d in controls to 4.7 d in salinized plants,
indicating that fewer leaves were expanding simultaneously
in the latter.

Figure 2A shows the spatial distribution of abaxial
epidermal cell lengths for leaves from both treatments.
Cell lengths increased to a final value of 100.365.9 lm in
CL and 86.363.2 lm in SL. Thus, final leaf length was
more severely affected than final cell length, suggesting that
cell division is more affected than cell elongation, as shown

Fig. 1. Salinity effects on length of leaf 5 of C. gayana seedlings on
successive days. Differences between control and salinized plants were
significant for the whole period. Results are means 6standard error for
15 blades. AFW, After leaf tip appearance above the sheath whorl. Filled
circles, control, open circles, NaCl.
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by Beemster and Masle (1996) for mechanical impedance
stress. Cellochron, the time interval during which a new cell
is added to a cell file in the elongation region, was 0.0428 h
in CL and 0.0722 h in SL, a very significant 70% increase
caused by the salt treatment. In addition, the velocities of
displacement (Fig. 2B), which indicate the rate at which
tissues located at a given distance from the ligule are
pushed away by the growing cells in the preceding
segments, were also lower in the distal part of the EZ, in
leaves from the salt treatment. Reduced cell division and

elongation both appear to contribute to the reduction in
displacement velocity in salinized plants.

Mean cell growth rates obtained from the slope of
change of velocities of displacement are shown in Fig.
2C. The distribution of growth rates in the elongation zone
was approximately symmetrical as a function of distance,
and growth rates between 0 mm and 15 mm from the ligule
were not affected by salinity. The maximal growth rate in
CL was 0.07 h�1, and 0.057 h�1 in SL (significantly dif-
ferent at P <0.05), a reduction of about 20% in the stressed
leaves. Maximal growth rates divide the regions of ac-
celerating (AZ) and decelerating growth (DZ) and were
registered at 20–25 mm and 15 mm from the ligule in CL
and SL, respectively. The length of the EZ zone was
reduced from 70 mm in CL to 50 mm in SL.

The effect of salinity on growth rates in the elongation
zone of C. gayana seedlings found in this study is very
similar to that previously reported for tillers of this species
(Ortega and Taleisnik, 2003) and maize (Neves-Piestun
and Bernstein, 2001, 2005). However, the distribution of
growth rates deduced from anatomical data is more
homogeneous than that obtained previously from pricking
studies. This difference may be ascribed mainly to the long
time interval between pricking and harvest in that study
(Erickson, 1976).

Xylem conduits area

Xylem cross-sectional area in the region spanning from
5 mm to 70 mm from the ligule was significantly reduced in
salt-treated plants (Fig. 3). The Hagen–Poiseuille formula
for calculating fluxes along ideal capillaries indicates that
fluxes are proportional to the fourth power of the vessels’
diameter, and hydraulic conductance estimates also take

Fig. 2. (A) Spatial distribution of abaxial interstomatal cell lengths in
leaf 5 from plants grown under control or 200 mM NaCl conditions.
Measurements were taken on day 3 after leaf tip appearance above the
sheath whorl, and are means 6standard error of 10–30 cells from four to
six different leaves. (B) Velocity of tissue displacement, based on data
from (A). (C) Distribution of growth rates, based on (B); notice maximum
elongation rates and EZ length differ in SL and CL.

Fig. 3. Xylem conduit areas in the EZ from control and salinized plants
at various distances from the ligule. Different letters indicate significant
differences (P <0.05) between treatments for that position. Each point is
the mean 6standard error of 8–18 vessels measured in three different
leaves.
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into account the water potential gradient along the vessel.
In the hypothetical case that those gradients were similar
for control and salinized plants, theoretical axial laminar
flows based on xylem vessel diameters would be c. 83%
lower in SL than in CL. This difference between con-
trol and salinized plants is much higher than the differ-
ence in turgor pressure (Ortega and Taleisnik, 2003) and
elongation rates in those plants. It is possible that phloem
water supply may be counteracting part of the restriction
resulting from decreased xylem water conductivity
(Martre et al., 2000). Physical properties of the cell wall
determine growth differences along the EZ in the presence
of constant turgor (Pritchard et al., 1993). Physical
properties of the wall can change in response to salt stress
(Cramer and Bowman, 1991; Lu and Neumann, 1999),
and could also contribute to the explanation of why hyd-
raulic restrictions do not match growth reductions.
This aspect was studied next.

Cell wall autofluorescence and peroxidase activity

As cell walls mature, the cross-linking of phenolic com-
pounds forms a hydophobic meshwork that bonds tightly to
cellulose and prevents wall enlargement. Cell wall fluor-

escence under UV light is considered to be a good indicator
of its phenolic compound content (Fukazawa and Imagawa,
1981). This parameter (measured as blue intensity in
digitized images; Fig. 4) increased as a function of distance
from the ligule, and was generally higher in salinized
plants, suggesting a higher content of integrated phenolics
in SL. These would strengthen the association among cell
wall polysaccharides and thus contribute to wall tightening.

Phenolic compounds are oxidized in place by apoplastic
phenol oxidases, and the association between peroxidase
activity and cessation of cell expansion has been shown in
several studies (MacAdam et al., 1992a, b; Bacon et al.,
1997; Souza and MacAdam, 2001). In CL, cell wall
peroxidase activities were similar throughout the EZ (Fig.
5A); however, a significant increase in peroxidase activity
was observed in the DZ in SL. The analysis of the isozyme
electrophoretic pattern indicates different isozyme bands
in the AZ and DZ, and effects of salinity on band inten-
sity. In the AZ of SL (Fig. 5B), decreased staining inten-
sity was observed in bands located at pH 7 and 9 while, in
the DZ (Fig. 5C), increased staining was observed in
bands located between pH 6.5 and 7. Leaves from salinized
plants showed shortened EZ and increased wall tightening
and peroxidase activity in the DZ. However, to find out
if changes in band distribution and intensity associate
with changes in polymer cross-linking requires substrate-
specificity tests (Quiroga et al., 2000).

XET and cell wall autolytic activity

By contrast to the clear growth reductions observed in the
DZ of SL (Fig. 2C), data from the AZ do not show a
significant inhibitory effect of salinity on growth. Growth
rates in the 20 mm leaf segment closest to the ligule were
similar in CL and SL, despite significant differences in
calculated hydraulic conductance. As sustaining growth
under such conditions would require especially loose cell
walls, the effects of salinity on some wall-loosening en-
zymes were assessed next.

XET activity was significantly higher in the AZ of the EZ
than in expanded laminae (Table 1), in accordance with
its proposed role in cell wall loosening and maintenance
of growth. Activity was twice as high in SL as in CL.
Apoplastic salt concentration is higher in salinized plants,
and salt has been reported to stimulate XET activity
(Takeda and Fry, 2004). Therefore, to evaluate salt in-
fluence on XET activity, NaCl was added to the reaction
mixture. NaCl (0.25 M), at a concentration compatible
with what has been reported in the EZ of C. gayana (de
Luca et al., 2001), caused both CL and SL XET activity
to increase by the same increment (6 cpm3102); though
smaller than that reported by Takeda and Fry (2004),
probably because the extracts used in the present work
already contained some endogenous salts and polyanions.
However, activity of neither CL or SL was further enhanced
by the addition of up to 1 M NaCl to the reaction medium

Fig. 4. Blue autofluorescence intensity measured on digitized images
from leaf preparations observed under a UV microscope. Data are means
6standard error of three measurements collected from cross-sections of
four blades. Black columns, CL; white solumns, SL.

Table 1. XET activity on DW basis in AZ and expanded regions
from leaves of C. gayana plants grown under control or salinized
conditions

Data are means 6standard error of seven independent measurements.

Leaf segment XET activity
(3H incorporation min�1 mg�1)

Control 200 mM NaCl

AZ 2.0760.33 4.3460.57
Expanded 0.12360.01 0.12660.01
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(Fig. 6). Since the addition of NaCl did not strongly
stimulate XET activity, it is suggested that the higher
activity in SL may be due to a promotion of transcription
and/or translation of preformed transcripts by salinity,
rather than to the higher NaCl content of the cell wall. In
a study of genes regulated specifically by salinity in
Arabidopsis, Ma et al. (2006) mention a putative XET
gene among those that were only or most strongly up-
regulated in salt-stressed roots.

Glucanases participate in cell wall loosening in an in-
direct manner, by modulating expansin and XET-mediated
creep. Contrary to the effects observed on XET activity, no

differences between CL and SL were found in cell wall
hydrolytic activities (Fig. 7). These measurements were
performed in the absence of added salts; however, the
addition of 200 mM NaCl, inhibited sugar release by 50%
(Fig. 7). This result may be significant in the context of the
interaction between this and other cell wall-loosening
activities such as expansins and XET.

The results from the present study indicate that while
reduced xylem vessel dimensions suggest hydraulic con-
straints throughout the EZ of SL, lamina growth dynamics
in salinized plants may be influenced by different processes
operating in the AZ and the DZ. The analysis of the DZ
indicates growth reduction was substantiated by a higher
phenolic compound content and increased peroxidase
activity. Nevertheless, in the AZ, XET activity was sig-
nificantly higher in SL than in CL, suggesting that, in vivo,
this activity may render walls more extensible, compen-
sating for the lower water supply.

On the other hand, it has been suggested that XET may
have a role in restructuring primary walls at the time when
secondary wall layers are deposited, by creating and
reinforcing the connections between the primary and
secondary wall layers (Bourquin et al., 2002). In Chloris
gayana leaves, as in soybean roots (Hilal et al., 1998),
salinity led to a premature maturing of xylem vessels.
Whether XET activity participates in this context remains
to be evaluated. It must also be borne in mind that wall
extensibility depends on the type of xyloglucan substrate
for XET activity as reported by Takeda et al. (2002), who
found that pea hypocotyl extensibility varied as a function
of the size of xyloglucans incorporated by XET activity. To
find out if salinity affects XET and glucanase substrate
availability and characteristics will be the object of another
study.

Fig. 5. (A) Specific peroxidase activity in accelerating (AZ) and decelerating (DZ) zones of EZ of C. gayana blades grown in control and salinized
conditions. Data are means 6standard error of three independent determinations. (B) Electrophoretic isozyme pattern from the AZ in the same leaves.
(C) Electrophoretic isozyme pattern from the DZ in the same leaves.

Fig. 6. Effect of NaCl on XET activity from control or salinized
(200 mM NaCl) plants. NaCl was added to the reaction medium
at the concentrations shown in the figure. Data are means 6standard
error of seven independent determinations. The y-axis shows 3H incor-
porated per unit time, a measure of XET activity.
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