Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  •  
    • español
    • English
  • Mi Cuenta
Acerca deAutoresTítulosTemasColeccionesComunidades☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver ítem 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Patagonia NorteEEA BarilocheArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • Inicio
  • Centros Regionales y EEAs
  • Centro Regional Patagonia Norte
  • EEA Bariloche
  • Artículos científicos
  • Ver ítem

Honeybees generalize among pollen scents from plants flowering in the same seasonal period

Resumen
When honey bees (Apis mellifera) feed on flowers, they extend their proboscis to absorb the nectar, i.e. they perform the proboscis extension response (PER). The presence of pollen and/or nectar can be associated with odors, colors or visual patterns, which allows honey bees to recognize food sources in the environment. Honey bees can associate similar, though different, stimuli with the presence of food; i.e. honey bees discriminate and generalize among [ver mas...]
When honey bees (Apis mellifera) feed on flowers, they extend their proboscis to absorb the nectar, i.e. they perform the proboscis extension response (PER). The presence of pollen and/or nectar can be associated with odors, colors or visual patterns, which allows honey bees to recognize food sources in the environment. Honey bees can associate similar, though different, stimuli with the presence of food; i.e. honey bees discriminate and generalize among stimuli. Here, we evaluated generalization among pollen scents from six different plant species. Experiments were based on the PER conditioning protocol over two phases: (1) conditioning, in which honey bees associated the scent of each pollen type with sucrose, and (2) test, in which honey bees were presented with a novel scent, to evaluate generalization. Generalization was evinced by honey bees extending their proboscis to a novel scent. The level of PER increased over the course of the conditioning phase for all pollen scents. Honey bees generalized pollen from Pyracantha coccinea and from Hypochaeris radicata. These two plants have different amounts of protein and are not taxonomically related. We observed that the flowering period influences the olfactory perceptual similarity and we suggest that both pollen types may share volatile compounds that play key roles in perception. Our results highlight the importance of analyzing the implications of the generalization between pollen types of different nutritional quality. Such studies could provide valuable information for beekeepers and agricultural producers, as the generalization of a higher quality pollen can benefit hive development, and increase pollination and honey production. [Cerrar]
Thumbnail
Autor
Pietrantuono, Ana Laura;   Requier, Fabrice;   Fernandez Arhex, Valeria Cristina;   Winter, Josefina;   Huerta, Guillermo Jose;   Guerrieri, Fernando;  
Fuente
Journal of Experimental Biology 222 (November 2019)
Fecha
2019-11
Editorial
The Company of Biologists
ISSN
0022-0949
1477-9145
URI
http://hdl.handle.net/20.500.12123/6488
https://jeb.biologists.org/content/222/21/jeb201335
DOI
https://doi.org/10.1242/jeb.201335
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Apidae; Abeja Melífera; Honey Bees; Polen; Pollen;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadatos
Mostrar el registro completo del ítem