Show simple item record

resumen

Abstract
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to [ver mas...]
dc.contributor.authorGrattapaglia, Dario
dc.contributor.authorSilva Junior, Orzenil B.
dc.contributor.authorResende, Rafael T.
dc.contributor.authorCappa, Eduardo Pablo
dc.contributor.authorMüller, Bárbara S. F.
dc.contributor.authorTan, Biyue
dc.contributor.authorIsik, Fikret
dc.contributor.authorRatcliffe, Blaise
dc.contributor.authorEl-Kassaby, Yousry A.
dc.date.accessioned2019-03-14T12:58:47Z
dc.date.available2019-03-14T12:58:47Z
dc.date.issued2018-11
dc.identifier.otherhttps://doi.org/10.3389/fpls.2018.01693
dc.identifier.urihttps://www.frontiersin.org/articles/10.3389/fpls.2018.01693/full
dc.identifier.urihttp://hdl.handle.net/20.500.12123/4605
dc.description.abstractForest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.sourceFrontiers in Plant Science 9 : 1693 (November 2018)es_AR
dc.subjectQuantitative Geneticseng
dc.subjectGenética Cuantitativaes_AR
dc.subjectLoci de Rasgos Cuantitativos
dc.subjectQuantitative Trait Locieng
dc.subjectÁrboles Forestales
dc.subjectForest Treeseng
dc.subject.otherGenomic Selectioneng
dc.subject.otherSelección Genómicaes_AR
dc.subject.otherTree Breedingeng
dc.subject.otherCría de Arboleses_AR
dc.subject.otherWhole-genome Regressioneng
dc.subject.otherRegresión de Todo el Genomaes_AR
dc.subject.otherSingle Nucleotide Polymorphismseng
dc.subject.otherPolimorfismos de un Sólo Nucleótidoes_AR
dc.subject.otherMarker Assisted Selectioneng
dc.subject.otherSelección Asistida por Marcadores_AR
dc.subject.otherRealized Genomic Relationshipeng
dc.subject.otherRelación Genómica Realizadaes_AR
dc.titleQuantitative genetics and genomics converge to accelerate forest tree breedinges_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.description.filFil: Grattapaglia, Dario. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidoses_AR
dc.description.filFil: Silva-Junior, Orzenil B. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasiles_AR
dc.description.filFil: Resende, Rafael T. EMBRAPA Recursos Genéticos e Biotecnologia; Brasiles_AR
dc.description.filFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentinaes_AR
dc.description.filFil: Müller, Bárbara S. F. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasiles_AR
dc.description.filFil: Tan, Biyue. Stora Enso AB. Biomaterials Division; Sueciaes_AR
dc.description.filFil: Isik, Fikret. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidoses_AR
dc.description.filFil: Rateliffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadáes_AR
dc.description.filFil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadáes_AR
dc.subtypecientifico


Files in this item

Thumbnail

This item appears in the following Collection(s)

common

Show simple item record