Mostrar el registro sencillo del ítem

resumen

Resumen
The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this [ver mas...]
dc.contributor.authorRolandi, Carmen
dc.contributor.authorLighton, John R.B.
dc.contributor.authorDe La Vega, Gerardo
dc.contributor.authorSchilman, Pablo Ernesto
dc.contributor.authorMensch, Julián
dc.date.accessioned2018-11-12T12:26:47Z
dc.date.available2018-11-12T12:26:47Z
dc.date.issued2018-10
dc.identifier.issn2045-7758
dc.identifier.otherhttps://doi.org/10.1002/ece3.4409
dc.identifier.urihttp://hdl.handle.net/20.500.12123/3860
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4409
dc.description.abstractThe range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherJohn Wiley & Sons Ltdes_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceEcology and Evolution 8 (20) : 1-10 (2018)es_AR
dc.subjectDrosophilaes_AR
dc.subjectVariación Genéticaes_AR
dc.subjectGenetic Variationeng
dc.subjectCambio Climáticoes_AR
dc.subjectClimate Changeeng
dc.subjectDrosophila melanogaster
dc.subjectTemperatura
dc.subjectTemperatureeng
dc.subjectTolerancia al Calor
dc.subjectHeat Toleranceeng
dc.subject.otherMoscases_AR
dc.titleGenetic variation for tolerance to high temperatures in a population of Drosophila melanogasteres_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.description.origenEstación Experimental Agropecuaria Barilochees_AR
dc.description.filFil: Rolandi, Carmen. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentinaes_AR
dc.description.filFil: Lighton, John R. Sable Systems International; Estados Unidoses_AR
dc.description.filFil: De la Vega, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentinaes_AR
dc.description.filFil: Schilman, Pablo Ernesto. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentinaes_AR
dc.description.filFil: Mensch, Julián. Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentinaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess