Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  •  
    • español
    • English
  • Mi Cuenta
Acerca deAutoresTítulosTemasColeccionesComunidades☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver ítem 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires NorteEEA PergaminoArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • Inicio
  • Centros Regionales y EEAs
  • Centro Regional Buenos Aires Norte
  • EEA Pergamino
  • Artículos científicos
  • Ver ítem

Wheat pre-anthesis development as affected by photoperiod sensitivity genes (Ppd-1) under contrasting photoperiods

Resumen
Fine tuning wheat phenology is of paramount importance for adaptation. A better understanding of how genetic constitution modulates the developmental responses during pre-anthesis phases would help to maintain or even increase yield potential as temperature increases due to climate change. The photoperiod-sensitive cultivar Paragon, and four near isogenic lines with different combinations of insensitivity alleles (Ppd-A1a, Ppd-B1a, Ppd-D1a or their triple [ver mas...]
Fine tuning wheat phenology is of paramount importance for adaptation. A better understanding of how genetic constitution modulates the developmental responses during pre-anthesis phases would help to maintain or even increase yield potential as temperature increases due to climate change. The photoperiod-sensitive cultivar Paragon, and four near isogenic lines with different combinations of insensitivity alleles (Ppd-A1a, Ppd-B1a, Ppd-D1a or their triple stack) were evaluated under short (12 h) and long (16 h) photoperiods. Insensitivity alleles decreased time to anthesis and duration of the three pre-anthesis phases (vegetative, early reproductive and late reproductive), following the Ppd-D1a > Ppd-A1a > Ppd-B1a ranking of strength. Stacking them intensified the insensitivity, but had no additive effect over that of Ppd-D1a. The late reproductive phase was the most responsive, even exhibiting a qualitative response. Leaf plastochron was not affected but spikelet plastochron increased according to Ppd-1a ranking of strength. Earlier anthesis resulted from less leaves differentiated and a fine tuning effect of accelerated rate of leaf appearance. None of the alleles affected development exclusively during any particular pre-anthesis phase, which would be ideal for tailoring time to anthesis with specific partitioning of developmental time into particular phases. Other allelic variants should be further tested to this purpose. [Cerrar]
Thumbnail
Autor
Perez Gianmarco, Thomas;   Slafer, Gustavo A.;   Gonzalez, Fernanda Gabriela;  
Fuente
Functional plant biology 45 (6) : 645-657. (January 2018).
Fecha
2018-01
URI
http://www.publish.csiro.au/FP/FP17195
http://hdl.handle.net/20.500.12123/2385
DOI
https://doi.org/10.1071/FP17195
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Trigo; Wheat; Genética; Genetics; Fisiología vegetal; Plant physiology;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadatos
Mostrar el registro completo del ítem