Mostrar el registro sencillo del ítem

resumen

Resumen
Soil organic carbon (SOC) is critical for sustaining agricultural productivity, enhancing resilience to climate change, and supporting ecosystem functions, particularly in fragile regions facing increasing aridity like Patagonia. Knowledge of SOC is often represented by decades old, coarse-scale maps or sparse data, limiting its utility for land managers and policymakers. This study leverages a novel SOC database (1,724 samples) integrated with remote [ver mas...]
dc.contributor.authorTrinco, Fabio Daniel
dc.contributor.authorZeraatpisheh, Mojtaba
dc.contributor.authorTurner, Hannah C.
dc.contributor.authorEl Mujtar, Veronica Andrea
dc.contributor.authorTittonell, Pablo Adrian
dc.contributor.authorGalford, Gillian L.
dc.date.accessioned2025-08-19T11:27:44Z
dc.date.available2025-08-19T11:27:44Z
dc.date.issued2025-11
dc.identifier.issn0341-8162
dc.identifier.issn1872-6887
dc.identifier.otherhttps://doi.org/10.1016/j.catena.2025.109353
dc.identifier.urihttp://hdl.handle.net/20.500.12123/23466
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0341816225006551
dc.description.abstractSoil organic carbon (SOC) is critical for sustaining agricultural productivity, enhancing resilience to climate change, and supporting ecosystem functions, particularly in fragile regions facing increasing aridity like Patagonia. Knowledge of SOC is often represented by decades old, coarse-scale maps or sparse data, limiting its utility for land managers and policymakers. This study leverages a novel SOC database (1,724 samples) integrated with remote sensing and spatial variables in a machine learning model to produce high-resolution (30 m) SOC data that captures decision-relevant scales of variability across diverse land covers and uses. Results revealed that Random Forest modelling performed best in the NW Patagonian mountainous region. Feature selection procedures identified soil depth, spectral indices, and climatic factors such as evapotranspiration and aridity as important co-variates. We found significant heterogeneity in SOC distribution, ranging from the greatest SOC concentration in Nothofagus pumilio forests (132.4 ± 19.2 t ha−1 at 0–30 cm depth), to the lowest in the grasslands of the Monte ecoregion (27.6 ± 8.0 t ha−1). Due to landmass size, the grasslands of the Steppe ecoregion have the most carbon (276.5 million tons), followed by Nothofagus pumilio forests (103.7 million tons). These SOC (t ha−1) estimates agree with other studies, showing little difference for forests (10 %) and grasslands (14 %). The resulting maps of this study provide a critical baseline for evaluating SOC distribution, informing land management strategies, and guiding future climate resilience efforts in Patagonia and other similarly vulnerable regions across the globe.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherElsevieres_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceCATENA 259 : 109353. (November 2025)es_AR
dc.subjectCarbono Orgánico del Sueloes_AR
dc.subjectSoil Organic Carboneng
dc.subjectMedio Ambientees_AR
dc.subjectEnvironmenteng
dc.subjectCobertura de Sueloses_AR
dc.subjectLand Covereng
dc.subjectPaisajees_AR
dc.subjectLandscapeeng
dc.subjectSistemas de Información Geográficaes_AR
dc.subjectGeographical Information Systemseng
dc.subject.otherSIGes_AR
dc.subject.otherGISeng
dc.subject.otherRegión Patagónicaes_AR
dc.titleHigh-resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in Patagoniaes_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenEEA Barilochees_AR
dc.description.filFil: Trinco, Fabio Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche; Argentinaes_AR
dc.description.filFil: Trinco, Fabio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentinaes_AR
dc.description.filFil: Zeraatpisheh, Mojtaba. University of Vermont. Gund Institute for Environment and Rubenstein School of Environment and Natural Resources; Estados Unidoses_AR
dc.description.filFil: Turner, Hannah C. University of Vermont. Gund Institute for Environment and Rubenstein School of Environment and Natural Resources; Estados Unidoses_AR
dc.description.filFil: El Mujtar, Veronica Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche; Argentinaes_AR
dc.description.filFil: El Mujtar, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentinaes_AR
dc.description.filFil: Tittonell, Pablo Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche; Argentinaes_AR
dc.description.filFil: Tittonell, Pablo Adrian. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentinaes_AR
dc.description.filFil: Tittonell, Pablo Adrian. Groningen University. Groningen Institute of Evolutionary Life Sciences; Países Bajoses_AR
dc.description.filFil: Tittonell, Pablo Adrian. Universite de Montpellier. Centre de cooperation Internationale en Recherche Agronomique pour le Developpement. Agroecologie et Intensification Durable; Francia.es_AR
dc.description.filFil: Galford, Gillian L. University of Vermont. Gund Institute for Environment and Rubenstein School of Environment and Natural Resources; Estados Unidoses_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess