Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Chaco - FormosaEEA Las BreñasArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Chaco - Formosa
- EEA Las Breñas
- Artículos científicos
- Ver ítem
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina
Resumen
Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region, the world’s largest dry tropical forest, were used to test the predictive performance of the Rothamsted Carbon Model (RothC) after its implementation in an
[ver mas...]
Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region, the world’s largest dry tropical forest, were used to test the predictive performance of the Rothamsted Carbon Model (RothC) after its implementation in an object-oriented graphical programming language. RothC provided promising predictions (i.e., precise and accurate) of the SOC stocks under two representative land covers in the region, native forest and Rhodes grass [relative prediction error (RPE) < 10%, concordance correlation coefficient (CCC) > 0.9, modelling efficiency (MEF) > 0.7]. Comparatively, model predictions of the SOC stocks under degraded Rhodes grass swards were suboptimal. The predictions were sensitive to C inputs; under native forests and Rhodes grass, a high C input improved the predictive performance of the model by reducing the mean bias and increasing the MEF values, compared with mean and low C inputs. Larger datasets and revisiting some of the underlying assumptions in the SOC modelling will be required to improve the model’s performance, particularly under the degraded Rhodes grass land cover.
[Cerrar]

Autor
Filip, Iván Daniel;
Peri, Pablo Luis;
Banegas, Natalia Romina;
Nasca, Jose Andres;
Sacido, Mónica;
Faverin, Claudia;
Vibart, Ronaldo;
Fuente
Sustainability 17 (11) : 5012 (June 2025)
Fecha
2025-06
Editorial
MDPI
ISSN
2071-1050
Documentos Relacionados
Formato
pdf
Tipo de documento
artículo
Proyectos
(ver más)
INTA/2019-PD-E3-I062-001, Estrategias de producción que incrementen el secuestro de C en suelo para la mitigación del Cambio Climático
INTA/2019-PE-E1-I006-001, Respuestas tecnológicas para el manejo sustentable y eficiente de pasturas megatérmicas en sistemas ganaderos del norte y centro de Argentina
INTA/2023-PD-L02-I097, Emisiones de gases de efecto invernadero y captura de carbono en sistemas agropecuarios y forestales
Palabras Claves
Derechos de acceso
Abierto
