Show simple item record

resumen

Abstract
The ∼30 Mb genomes of the Plasmodium parasites that cause malaria each encode ∼5000 genes, but the functions of the majority remain unknown. This is due to a paucity of functional annotation from sequence homology, which is compounded by low genetic tractability compared with many model organisms. In recent years technical breakthroughs have made forward and reverse genome-scale screens in Plasmodium possible. Furthermore, the adaptation of Clustered [ver mas...]
dc.contributor.authorIshizaki, Takahiro
dc.contributor.authorHernandez, Sophia
dc.contributor.authorPaoletta, Martina
dc.contributor.authorSanderson, Theo
dc.contributor.authorBushell, Ellen S. C.
dc.date.accessioned2022-07-29T10:52:58Z
dc.date.available2022-07-29T10:52:58Z
dc.date.issued2022-06
dc.identifier.issn1470-8752
dc.identifier.otherhttps://doi.org/10.1042/BST20210281
dc.identifier.urihttp://hdl.handle.net/20.500.12123/12437
dc.identifier.urihttps://portlandpress.com/biochemsoctrans/article/50/3/1069/231360/CRISPR-Cas9-and-genetic-screens-in-malaria
dc.description.abstractThe ∼30 Mb genomes of the Plasmodium parasites that cause malaria each encode ∼5000 genes, but the functions of the majority remain unknown. This is due to a paucity of functional annotation from sequence homology, which is compounded by low genetic tractability compared with many model organisms. In recent years technical breakthroughs have made forward and reverse genome-scale screens in Plasmodium possible. Furthermore, the adaptation of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Associated protein 9 (CRISPR/Cas9) technology has dramatically improved gene editing efficiency at the single gene level. Here, we review the arrival of genetic screens in malaria parasites to analyse parasite gene function at a genome-scale and their impact on understanding parasite biology. CRISPR/Cas9 screens, which have revolutionised human and model organism research, have not yet been implemented in malaria parasites due to the need for more complex CRISPR/Cas9 gene targeting vector libraries. We therefore introduce the reader to CRISPR-based screens in the related apicomplexan Toxoplasma gondii and discuss how these approaches could be adapted to develop CRISPR/Cas9 based genome-scale genetic screens in malaria parasites. Moreover, since more than half of Plasmodium genes are required for normal asexual blood-stage reproduction, and cannot be targeted using knockout methods, we discuss how CRISPR/Cas9 could be used to scale up conditional gene knockdown approaches to systematically assign function to essential genes.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherPortland Presses_AR
dc.relationinfo:eu-repograntAgreement/INTA/2019-PD-E5-I105-001/2019-PD-E5-I105-001/AR./Patógenos animales: su interacción con el hospedador y el medio ambiente. Impacto en productividad, ecosistemas, sanidad animal y salud pública en el marco “Una Salud”es_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.sourceBiochemical Society Transactions 50 (3) : 1069-1079 (Junio 2022)es_AR
dc.subjectMolecular Geneticseng
dc.subjectGenética Moleculares_AR
dc.subjectLaboratory Techniqueseng
dc.subjectTécnicas de Laboratorioes_AR
dc.subjectCRISPReng
dc.subjectRepeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadases_AR
dc.subjectMalariaes_AR
dc.subjectPlasmodium falciparumes_AR
dc.subjectParasitologyeng
dc.subjectParasitologíaes_AR
dc.subjectGenomeseng
dc.subjectGenomases_AR
dc.subject.otherHost–microbe Interactionseng
dc.subject.otherInteracciones Huésped-microbioes_AR
dc.titleCRISPR/Cas9 and genetic screens in malaria parasites : small genomes, big impactes_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.description.origenInstituto de Biotecnologíaes_AR
dc.description.filFil: Ishizaki, Takahiro. Umeå University. Department of Molecular Biology; Sueciaes_AR
dc.description.filFil: Ishizaki, Takahiro. The Laboratory for Molecular Infection Medicine Sweden (MIMS); Sueciaes_AR
dc.description.filFil: Hernandez, Sophia. Umeå University. Department of Molecular Biology; Sueciaes_AR
dc.description.filFil: Hernandez, Sophia. The Laboratory for Molecular Infection Medicine Sweden (MIMS); Sueciaes_AR
dc.description.filFil: Paoletta, Martina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentinaes_AR
dc.description.filFil: Paoletta, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Paoletta, Martina. Umeå University. Department of Molecular Biology; Sueciaes_AR
dc.description.filFil: Paoletta, Martina. The Laboratory for Molecular Infection Medicine Sweden (MIMS); Sueciaes_AR
dc.description.filFil: Sanderson, Theo. Francis Crick Institute; Reino Unidoes_AR
dc.description.filFil: Bushell, Ellen S. C. Umeå University. Department of Molecular Biology; Sueciaes_AR
dc.description.filFil: Bushell, Ellen S. C. The Laboratory for Molecular Infection Medicine Sweden (MIMS); Sueciaes_AR
dc.subtypecientifico


Files in this item

Thumbnail

This item appears in the following Collection(s)

common

Show simple item record