Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  •  
    • español
    • English
  • Mi Cuenta
Acerca deAutoresTítulosTemasColeccionesComunidades☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver ítem 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Patagonia SurEEA ChubutArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • Inicio
  • Centros Regionales y EEAs
  • Centro Regional Patagonia Sur
  • EEA Chubut
  • Artículos científicos
  • Ver ítem

SatRed: New classification land use/land cover model based on multi-spectral satellite images and neural networks applied to a semiarid valley of Patagonia

Resumen
In this article we describe a new model, SatRed, which classifies land use and land cover (LULC) from Sentinel-2 imagery and data acquired in the field. SatRed performs pixel-level classification and is based on a densely-connected neural network. The study site is the lower Chubut river valley which has an extension of 225 km2 and is located in estern semiarid Patagonia. SatRed showed a 0.909 ± 0.009% (mean ± sd, n = 7) overall accuracy and outperformed [ver mas...]
In this article we describe a new model, SatRed, which classifies land use and land cover (LULC) from Sentinel-2 imagery and data acquired in the field. SatRed performs pixel-level classification and is based on a densely-connected neural network. The study site is the lower Chubut river valley which has an extension of 225 km2 and is located in estern semiarid Patagonia. SatRed showed a 0.909 ± 0.009% (mean ± sd, n = 7) overall accuracy and outperformed the seven most traditional Machine Learning methods, including Random Forest. Our model accurately predicted buildings, shrublands, pastures and water and yielded the best results with classes harder to classify by all methods considered (Fruit crops and Horticulture). Further improvements involving textural information and multi-temporal images are proposed. Our model proved to be easy to run and use, fast to execute and flexible. We highlight the capacity of SatRed to classify LULC in small study areas as compared to large data sets usually needed for state-of-the-art Deep Learning models suggested in literature. [Cerrar]
Thumbnail
Autor
Trujillo-Jiménez, Magda Alexandra;   Liberoff, Ana Laura;   Pessacg, Natalia;   Pacheco, Cristian;   Diaz, Lucas Damian;   Flaherty, Silvia;  
Fuente
Remote Sensing Applications: Society and Environment : 100703 (Available online 26 February 2022)
Fecha
2022-02
Editorial
Elsevier
ISSN
2352-9385
URI
http://hdl.handle.net/20.500.12123/11307
https://www.sciencedirect.com/science/article/abs/pii/S2352938522000118
DOI
https://doi.org/10.1016/j.rsase.2022.100703
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Utilización de la Tierra; Land Use; Cobertura de Suelos; Land Cover; Imágenes por Satélites; Satellite Imagery; Redes de Neuronas; Neural Networks; Aprendizaje Electrónico; Machine Learning; Región Patagónica; Valle Inferior del Río Chubut, Argentina;
Derechos de acceso
Embargado
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadatos
Mostrar el registro completo del ítem