Mostrar el registro sencillo del ítem

resumen

Resumen
This study evaluates the spatio-temporal coherence of regional extreme precipitation indices in subtropical Argentina (STAr) derived from rain gauge station data from 1991 to 2021. For the regionalization two machine learning clustering algorithms are used—Ward's method and K-means—and a novel stepwise regionalization approach, HAZ. While machine learning algorithms require the apriori definition of the optimal number of clusters, which varies [ver mas...]
dc.contributor.authorRicetti, Lorenzo
dc.contributor.authorHurtado, Santiago Ignacio
dc.contributor.authorAgosta Scarel, Eduardo A.
dc.date.accessioned2025-04-24T10:39:54Z
dc.date.available2025-04-24T10:39:54Z
dc.date.issued2025-07
dc.identifier.issn0169-8095
dc.identifier.issn1873-2895
dc.identifier.otherhttps://doi.org/10.1016/j.atmosres.2025.108082
dc.identifier.urihttp://hdl.handle.net/20.500.12123/22031
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0169809525001747
dc.description.abstractThis study evaluates the spatio-temporal coherence of regional extreme precipitation indices in subtropical Argentina (STAr) derived from rain gauge station data from 1991 to 2021. For the regionalization two machine learning clustering algorithms are used—Ward's method and K-means—and a novel stepwise regionalization approach, HAZ. While machine learning algorithms require the apriori definition of the optimal number of clusters, which varies considerably with the used metric and selection criteria, the HAZ method relies on a Pearson's correlation coefficient threshold and avoids this limitation. In most cases machine learning algorithms struggled to produce coherent regions, with fewer clusters prioritizing spatial coherence at the expense of temporal consistency, and vice versa. Conversely, the HAZ method systematically outperformed machine learning approaches, providing regions with adequate spatio-temporal coherence. Notably, HAZ permits some stations to remain unclustered, allowing to reflect the local variability in extreme precipitation. The overall good performance of the HAZ method demonstrates its potential for broader applications in hydro-climatic studies. Moreover, two intensity indices were unsuitable for regionalization due to poor coherence, while the other three were prone to regionalization throughout the year. The Accumulated index, particularly using the 95th percentile as a threshold, emerged as the most representative, effectively synthesizing extreme precipitation characteristics in STAr. Finally, the necessity of validating the spatio-temporal internal coherence of clustering algorithms outputs is emphasized to avoid mischaracterization and ensure robust regionalization results.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherElsevieres_AR
dc.relationinfo:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemases_AR
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceAtmospheric Research 320 : 108082 (July 2025)es_AR
dc.subjectEvento Meteorológico Extremoes_AR
dc.subjectExtreme Weather Eventseng
dc.subjectPrecipitación Atmosféricaes_AR
dc.subjectPrecipitationeng
dc.subjectLluvia Torrenciales_AR
dc.subjectTorrential Rainseng
dc.subjectZona Subtropicales_AR
dc.subjectSubtropical Zoneseng
dc.subjectArgentinaes_AR
dc.titleOn the spatio-temporal coherence of extreme precipitation indices in subtropical Argentinaes_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenEEA Barilochees_AR
dc.description.filFil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Grupo de investigación en Clima, Variabilidad y Extremos (CLAVE); Argentinaes_AR
dc.description.filFil: Ricetti, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentinaes_AR
dc.description.filFil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentinaes_AR
dc.description.filFil: Hurtado, Santiago Ignacio. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Grupo de investigación en Clima, Variabilidad y Extremos (CLAVE); Argentinaes_AR
dc.description.filFil: Agosta Scarel, Eduardo A. Carmelite NGO. Climate Change and Sustainability Section; Estados Unidoses_AR
dc.description.filFil: Agosta Scarel, Eduardo A. Spanish Episcopal Conference. Integral Ecology Department; Españaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/restrictedAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/restrictedAccess