Mostrar el registro sencillo del ítem

resumen

Resumen
Quantification of plant disease severity is key for plant pathology research, particularly in the evaluation of disease management strategies. Visual estimation of severity remains widely used, especially in field experiments. Training sessions and the use of standard area diagram sets (SADs) are known to enhance rater accuracy. In this study, we aimed to quantify and compare the benefits of these tools, either used alone or in combination, when visually [ver mas...]
dc.contributor.authorCazon, Luis Ignacio
dc.contributor.authorParedes, Juan Andrés
dc.contributor.authorGonzález, N.R.
dc.contributor.authorConforto, Erica Cinthia
dc.contributor.authorSuarez, L.
dc.contributor.authorDel Ponte, Emerson M.
dc.date.accessioned2025-03-18T16:01:54Z
dc.date.available2025-03-18T16:01:54Z
dc.date.issued2025-03
dc.identifier.issn0929-1873
dc.identifier.issn1573-8469 (online)
dc.identifier.otherhttps://doi.org/10.1007/s10658-025-03016-1
dc.identifier.urihttp://hdl.handle.net/20.500.12123/21707
dc.identifier.urihttps://link.springer.com/article/10.1007/s10658-025-03016-1
dc.description.abstractQuantification of plant disease severity is key for plant pathology research, particularly in the evaluation of disease management strategies. Visual estimation of severity remains widely used, especially in field experiments. Training sessions and the use of standard area diagram sets (SADs) are known to enhance rater accuracy. In this study, we aimed to quantify and compare the benefits of these tools, either used alone or in combination, when visually assessing peanut late leaf spot severity. We designed and validated SADs to aid in disease severity estimation and also evaluated the training tool TraineR2, a web-based app that contains actual images of the disease with known severity. Our results show that both tools led to a significant improvement in rater accuracy after their use. For TraineR2, the gains in overall accuracy (ρc from 0.82 to 0.91) and precision (Pearson's r from 0.73 to 0.88) were slightly lower than those obtained with the SADs (ρc from 0.89 to 0.96 and Pearson's r from 0.85 to 0.95). When training and SADs were combined, the overall accuracy was 0.97, and Pearson's r was 0.96, values statistically similar to those achieved using SADs alone. Regarding inter-rater reliability, evaluated based on the intraclass correlation coefficient (ICC), using SADs and training together resulted in an ICC of 0.95, which was higher than using SADs alone (0.93) or training alone (0.84). Our study confirms the utility of combining training sessions and SADs for improving the accuracy of plant disease assessments.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherSpringeres_AR
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceEuropean Journal of Plant Pathology : 1-15. (Published: 14 March 2025)es_AR
dc.subjectArachis hypogaea
dc.subjectEnfermedades de las Plantas
dc.subjectPlant Diseaseseng
dc.subject.otherNothopassalora personataes_AR
dc.subject.otherTraineR2eng
dc.subject.otherPhytopathometryeng
dc.subject.otherManíes_AR
dc.titleOptimizing visual estimation of peanut late leaf spot severity with online training sessions and standard area diagramses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenInstituto de Patología Vegetales_AR
dc.description.filFil: Cazon, Luis Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentinaes_AR
dc.description.filFil: Cazon, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentinaes_AR
dc.description.filFil: Paredes, Juan Andrés. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentinaes_AR
dc.description.filFil: Paredes, Juan Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentinaes_AR
dc.description.filFil: González, N.R. Fundación ArgenINTA. Delegación IFFIVE. Córdoba; Argentinaes_AR
dc.description.filFil: Conforto, Erica Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentinaes_AR
dc.description.filFil: Conforto, Erica Cinthia. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentinaes_AR
dc.description.filFil: Suarez, L. Fundación ArgenINTA. Delegación IFFIVE. Córdoba; Argentinaes_AR
dc.description.filFil: Del Ponte, E. M. Universidade Federal de Viçosa. Departamento de Fitopatologia; Brasiles_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/restrictedAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/restrictedAccess