Mostrar el registro sencillo del ítem
resumen
Resumen
Early detection and monitoring of invasive forest pests are crucial for effective pest management, particularly in preventing large-scale damage, reducing eradication costs, and improving overall control effectiveness. This study investigates the potential of machine learning models and remote sensing at various spatiotemporal scales to assess forest damage caused by the woodwasp Sirex noctilio in pine plantations. A Random Forest (RF) model was applied
[ver mas...]
dc.contributor.author | Hirigoyen, Andrés | |
dc.contributor.author | Villacide, Jose Maria | |
dc.date.accessioned | 2025-02-13T10:56:51Z | |
dc.date.available | 2025-02-13T10:56:51Z | |
dc.date.issued | 2025-02 | |
dc.identifier.issn | 2072-4292 | |
dc.identifier.other | https://doi.org/10.3390/rs17030537 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12123/21240 | |
dc.identifier.uri | https://www.mdpi.com/2072-4292/17/3/537 | |
dc.description.abstract | Early detection and monitoring of invasive forest pests are crucial for effective pest management, particularly in preventing large-scale damage, reducing eradication costs, and improving overall control effectiveness. This study investigates the potential of machine learning models and remote sensing at various spatiotemporal scales to assess forest damage caused by the woodwasp Sirex noctilio in pine plantations. A Random Forest (RF) model was applied to analyze Planetscope satellite images of Sirex-affected areas in Neuquén, Argentina. The model’s results were validated through accuracy analysis and the Kappa method to ensure robustness. Our findings demonstrate that the RF model accurately classified Sirex damage levels, with classification accuracy improving progressively over time (overall accuracy of 87% for five severity categories and 98% for two severity categories). This allowed for a clearer distinction between healthy and Sirex-infested trees, as well as a more refined categorization of damage severity. This study highlights the potential of machine learning models to accurately assess tree health and quantify pest damage in plantation forests, offering valuable tools for large-scale pest monitoring. | eng |
dc.format | application/pdf | es_AR |
dc.language.iso | eng | es_AR |
dc.publisher | MDPI | es_AR |
dc.relation | info:eu-repograntAgreement/INTA/2023-PD-L01-I074, Bases ecológicas y epidemiológicas para el diseño de estrategias de manejo de plagas agrícolas y forestales | es_AR |
dc.relation | info:eu-repograntAgreement/INTA/2023-PE-L03-I033, Gestión Sostenible de los sistemas forestales naturales y cultivados para el desarrollo de los territorios y la provisión de servicios ecosistémicos en Patagonia Andina | es_AR |
dc.rights | info:eu-repo/semantics/openAccess | es_AR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | es_AR |
dc.source | Remote Sensing 17 (3) : 537 (February 2025) | es_AR |
dc.subject | Sirex | eng |
dc.subject | Plagas Forestales | es_AR |
dc.subject | Forest Pests | eng |
dc.subject | Teledetección | es_AR |
dc.subject | Remote Sensing | eng |
dc.subject | Pinus | eng |
dc.subject | Daños | es_AR |
dc.subject | Damage | eng |
dc.subject | Modelos Matemáticos | es_AR |
dc.subject | Mathematical Models | eng |
dc.subject.other | Sirex noctilio | es_AR |
dc.title | Assessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Models | es_AR |
dc.type | info:ar-repo/semantics/artículo | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type | info:eu-repo/semantics/publishedVersion | es_AR |
dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | es_AR |
dc.description.origen | EEA Bariloche | es_AR |
dc.description.fil | Fil: Hirigoyen, Andrés. Instituto Nacional de Investigación Agropecuaria (INIA) Las Brujas. Sistema Forestal; Uruguay | es_AR |
dc.description.fil | Fil: Villacide, Jose Maria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentina | es_AR |
dc.description.fil | Fil: Villacide, Jose Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentina | es_AR |
dc.subtype | cientifico |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
common
-
Artículos científicos [607]