Mostrar el registro sencillo del ítem

resumen

Resumen
Early detection and monitoring of invasive forest pests are crucial for effective pest management, particularly in preventing large-scale damage, reducing eradication costs, and improving overall control effectiveness. This study investigates the potential of machine learning models and remote sensing at various spatiotemporal scales to assess forest damage caused by the woodwasp Sirex noctilio in pine plantations. A Random Forest (RF) model was applied [ver mas...]
dc.contributor.authorHirigoyen, Andrés
dc.contributor.authorVillacide, Jose Maria
dc.date.accessioned2025-02-13T10:56:51Z
dc.date.available2025-02-13T10:56:51Z
dc.date.issued2025-02
dc.identifier.issn2072-4292
dc.identifier.otherhttps://doi.org/10.3390/rs17030537
dc.identifier.urihttp://hdl.handle.net/20.500.12123/21240
dc.identifier.urihttps://www.mdpi.com/2072-4292/17/3/537
dc.description.abstractEarly detection and monitoring of invasive forest pests are crucial for effective pest management, particularly in preventing large-scale damage, reducing eradication costs, and improving overall control effectiveness. This study investigates the potential of machine learning models and remote sensing at various spatiotemporal scales to assess forest damage caused by the woodwasp Sirex noctilio in pine plantations. A Random Forest (RF) model was applied to analyze Planetscope satellite images of Sirex-affected areas in Neuquén, Argentina. The model’s results were validated through accuracy analysis and the Kappa method to ensure robustness. Our findings demonstrate that the RF model accurately classified Sirex damage levels, with classification accuracy improving progressively over time (overall accuracy of 87% for five severity categories and 98% for two severity categories). This allowed for a clearer distinction between healthy and Sirex-infested trees, as well as a more refined categorization of damage severity. This study highlights the potential of machine learning models to accurately assess tree health and quantify pest damage in plantation forests, offering valuable tools for large-scale pest monitoring.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherMDPIes_AR
dc.relationinfo:eu-repograntAgreement/INTA/2023-PD-L01-I074, Bases ecológicas y epidemiológicas para el diseño de estrategias de manejo de plagas agrícolas y forestaleses_AR
dc.relationinfo:eu-repograntAgreement/INTA/2023-PE-L03-I033, Gestión Sostenible de los sistemas forestales naturales y cultivados para el desarrollo de los territorios y la provisión de servicios ecosistémicos en Patagonia Andinaes_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceRemote Sensing 17 (3) : 537 (February 2025)es_AR
dc.subjectSirexeng
dc.subjectPlagas Forestaleses_AR
dc.subjectForest Pestseng
dc.subjectTeledetecciónes_AR
dc.subjectRemote Sensingeng
dc.subjectPinuseng
dc.subjectDañoses_AR
dc.subjectDamageeng
dc.subjectModelos Matemáticoses_AR
dc.subjectMathematical Modelseng
dc.subject.otherSirex noctilioes_AR
dc.titleAssessing Sirex noctilio Fabricius (Hymenoptera: Siricidae) Damage in Pine Plantations Using Remote Sensing and Predictive Machine Learning Modelses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenEEA Barilochees_AR
dc.description.filFil: Hirigoyen, Andrés. Instituto Nacional de Investigación Agropecuaria (INIA) Las Brujas. Sistema Forestal; Uruguayes_AR
dc.description.filFil: Villacide, Jose Maria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentinaes_AR
dc.description.filFil: Villacide, Jose Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentinaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess