Ver ítem
- xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCICVyA. Centro de Investigación en Ciencias Veterinarias y AgronómicasInstituto de GenéticaArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros e Institutos de Investigación
- CICVyA. Centro de Investigación en Ciencias Veterinarias y Agronómicas
- Instituto de Genética
- Artículos científicos
- Ver ítem
Research gaps and new insights in the evolution of Drosophila seminal fluid proteins
Resumen
While the striking effects of seminal fluid proteins (SFPs) on females are fairly conserved among Diptera, most SFPs lack detectable homologues among the SFP repertoires of phylogenetically distant species. How such a rapidly changing proteome conserves functions across taxa is a fascinating question. However, this and other pivotal aspects of SFPs' evolution remain elusive because discoveries on these proteins have been mainly restricted to the model
[ver mas...]
While the striking effects of seminal fluid proteins (SFPs) on females are fairly conserved among Diptera, most SFPs lack detectable homologues among the SFP repertoires of phylogenetically distant species. How such a rapidly changing proteome conserves functions across taxa is a fascinating question. However, this and other pivotal aspects of SFPs' evolution remain elusive because discoveries on these proteins have been mainly restricted to the model Drosophila melanogaster. Here, we provide an overview of the current knowledge on the inter-specific divergence of the SFP repertoire in Drosophila and compile the increasing amount of relevant genomic information from multiple species. Capitalizing on the accumulated knowledge in D. melanogaster, we present novel sets of high-confidence SFP candidates and transcription factors presumptively involved in regulating the expression of SFPs. We also address open questions by performing comparative genomic analyses that failed to support the existence of many conserved SFPs shared by most dipterans and indicated that gene co-option is the most frequent mechanism accounting for the origin of Drosophila SFP-coding genes. We hope our update establishes a starting point to integrate further data and thus widen the understanding of the intricate evolution of these proteins.
[Cerrar]
Autor
Hurtado, Juan;
Almeida, Francisca Cunha;
Belliard, Silvina Ahnahi;
Revale, Santiago;
Hasson, Esteban;
Fuente
Insect Molecular Biology (First published: 07 November 2021)
Fecha
2021-11
Editorial
Wiley
ISSN
0962-1075
1365-2583
1365-2583
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Embargado
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)