Show simple item record

resumen

Abstract
Objectives: Unlike higher organisms such as domestic animals and cultivated plants, which display a robust reproductive isolation and limited dispersal ability, microbes exhibit an extremely promiscuous gene flow and can rapidly disperse across the planet by multiple ways. Thus, microbial plasmids, including synthetic replicons, containing antibiotic resistance genes are a serious risk to public health. In this short communication, we explored the [ver mas...]
dc.contributor.authorBrambilla, Silvina Maricel
dc.contributor.authorFrare, Romina Alejandra
dc.contributor.authorStritzler, Margarita
dc.contributor.authorSoto, Gabriela Cynthia
dc.contributor.authorBerini, Carolina Andrea
dc.contributor.authorJozefkowicz, Cintia
dc.contributor.authorAyub, Nicolás Daniel
dc.date.accessioned2020-09-08T16:40:06Z
dc.date.available2020-09-08T16:40:06Z
dc.date.issued2020-09
dc.identifier.issn2213-7173
dc.identifier.otherhttps://doi.org/10.1016/j.jgar.2020.01.015
dc.identifier.urihttp://hdl.handle.net/20.500.12123/7848
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2213716520300163
dc.description.abstractObjectives: Unlike higher organisms such as domestic animals and cultivated plants, which display a robust reproductive isolation and limited dispersal ability, microbes exhibit an extremely promiscuous gene flow and can rapidly disperse across the planet by multiple ways. Thus, microbial plasmids, including synthetic replicons, containing antibiotic resistance genes are a serious risk to public health. In this short communication, we explored the presence of synthetic elements in alfalfa symbionts (Ensifer meliloti strains) from agricultural soils. Methods: A total of 148 E. meliloti isolates from alfalfa plants growing under field conditions were collected from January 2015 to June 2019. Antimicrobial susceptibility testing was performed under laboratory conditions. We identified five kanamycin-resistant E. meliloti strains (named K1-K5). Whole genome sequencing analysis and conjugations were used to identify and study the plasmids of K strains. Results: We found that the genomes of K strains contain ampicillin, kanamycin and tetracycline resistance genes, the reporter gene lacZ from Escherichia coli and multiple cloning sites. These sequences were found within <58-kb plasmids related to the self-transmissible IncP plasmid RP4 from human pathogen Pseudomonas aeruginosa. Conjugation experiments confirmed the ability of K strains to transfer antibiotic resistance via conjugation to the Pseudomonas background. Conclusion: In addition to the traditional analysis of plant growth-promoting factors, the commercial deregulation of putative natural inoculants should also include genomic studies to ensure a reasonable balance between innovation and caution.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherElsevieres_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.sourceJournal of Global Antimicrobial Resistance 22 : 113-116 (Septiembre 2020)es_AR
dc.subjectGenetically Modified Organismseng
dc.subjectOrganismos Modificados Genéticamentees_AR
dc.subjectGenetically Modified Microorganismseng
dc.subjectMicroorganismos Modificados Genéticamentees_AR
dc.subjectResistance to Antibioticseng
dc.subjectResistencia a los Antibióticoses_AR
dc.subjectBeta Galactosidaseeng
dc.titleSynthetic multi-antibiotic resistant plasmids in plant-associated bacteria from agricultural soilses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.description.origenInstituto de Genéticaes_AR
dc.description.filFil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Berini, Carolina Andrea. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Jozefkowicz, Cintia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.subtypecientifico


Files in this item

Thumbnail

This item appears in the following Collection(s)

common

Show simple item record