Show simple item record

resumen

Abstract
Compared to pasture based sistems, milk produced in confined dairy systems is characterized by a high saturated fat (SF) content with a lower concentration of healthy fatty acids (FA) such as vaccenic (VA, trans-11C18:1), conjugated linoleic cid (cis-9, trans-11 C18:2, CLA), α-linolenic (cis-9, cis-12, cis-15C18: 3), eicosapentaenoic (EPA, C20:5) and docosahexaenoic (DHA, C22:6) whose presence in milk and dairy products can be increased by feeding [ver mas...]
dc.contributor.authorGagliostro, Gerardo Antonio
dc.contributor.authorAntonacci, Liliana Elisabet
dc.contributor.authorPerez, Carolina Daiana
dc.contributor.authorRossetti, Luciana
dc.contributor.authorCarabajal, Augusto
dc.date.accessioned2020-06-03T16:40:40Z
dc.date.available2020-06-03T16:40:40Z
dc.date.issued2020-01-18
dc.identifier.issn2161-7627 (Online)
dc.identifier.issn2161-7597
dc.identifier.otherhttps://doi.org/10.4236/ojas.2020.101010
dc.identifier.urihttp://hdl.handle.net/20.500.12123/7353
dc.identifier.urihttps://www.scirp.org/journal/paperinformation.aspx?paperid=98031
dc.description.abstractCompared to pasture based sistems, milk produced in confined dairy systems is characterized by a high saturated fat (SF) content with a lower concentration of healthy fatty acids (FA) such as vaccenic (VA, trans-11C18:1), conjugated linoleic cid (cis-9, trans-11 C18:2, CLA), α-linolenic (cis-9, cis-12, cis-15C18: 3), eicosapentaenoic (EPA, C20:5) and docosahexaenoic (DHA, C22:6) whose presence in milk and dairy products can be increased by feeding polyunsaturated FA (PUFA). The aim of the study was to determine the differences in milk composition and FA profile between a regular (Reg) milk (Reg-Milk), a Reg-Dambo type cheese (Reg-DCh) and a Reg yogurt (Reg-Yog) with that obtained after including a blend (7:1) of soybean (SO) and fish (FO) oils in the total mixed ration (TMR) of lactating dairy cows. The experiment was carried out at the Talar Farm located at Laguna del Sauce, Maldonado Department, Punta del Este, Uruguay Republic during a period of 30 experimental days using a single production batch of 29 Holstein cows. Within this batch, one group of 8 cows (1.88 ± 0.99 calves) in early lactation (135 ± 19 days postpartum) was selected to individually measure milk yield and composition. During the first 7 days of the experiment, cows were fed a TMR without oil-blend inclusion to obtain the Reg-Milk, Reg-DCh and Reg-Yog. From the 8th day onwards, the oil blend was added to the TMR at 4% DM (1.0 kg oil blend cow−1 day−1) and after 23 days of feeding, the modified (Mod-Milk) was analyzed and collected to elaborate the modified Dambo- type cheese (Mod-DCh) and Mod-yogurt (Mod-Yog). Milk yield was recorded daily in the selected 8 cows and milk composition was determined over two consecutive days prior to the start of blend-oil supply (Reg-Milk) and at the end of oil supplementation (Mod-Milk) on days 29th and 30th. Milk-tank samples of Reg-Mi and Mod-Mi were also collected and analyzed for chemical composition and milk FA profile. Cheese and yogurt were assayed for its FA profile. Differences in milk yield and composition and in the FA profile before and after oil-feeding were stated using the Student T-test for paired observations. Milk production (kg∙cow−1∙day−1) slightly (−6.7%) decreased (P < 0.03) from 36.89 (before) to 34.69 after oil feeding. Milk fat content decreased (P < 0.05) from 3.28 to 3.02 g 100 g−1 g leading to a lower (P < 0.02) yield (kg∙cow−1∙day−1) of fat corrected milk (4%FCM) from 32.83 (before) to 29.63 after oil. Milk protein content (g 100 g−1) increased (P < 0.04) from 2.89 (before) to 3.08 (after) oil feeding (+5.92%) a result confirmed (P < .01) in samples taken from the tank. Milk protein output (1.07 kg∙cow−1∙day−1) (P < 0.96), lactose (P < 0.65) and total solid (P < 0.38) contents were not affected. Concentration of non-fat solids (NFS) tended (P < 0.08) to increase from 8.50 in Reg-Mi, to 8.68 g 100 g−1 in Mod-Mi as it was observed (P < 0.001) in samples taken from the tank (8.78 vs. 9.93 g 100 g−1). Yield of NFS tended (P < 0.07) to decrease from 3.14 to 3.01 kg∙cow−1∙day−1 after oil supply. Content of atherogenic FA (C12:0 to C16:0) was significantly (P < 0.064) reduced (−10.29%) from 44.50 (Reg-Mi) to 39.92 g 100 g−1 (Mod-Mi) with a concomitant decrease (P < 0.10) in the atherogenic index (AI) from 2.45 (Reg-Mi) to 2.03 (Mod-Mi). Concentration (g 100 g−1 FA) of elaidic (trans-9 C18:1) and trans-10 C18:1 FA was low in Reg-Mi (0.22 and 0.34 respectively) but tended (P < 0.11) to increase in Mod-Mi (0.43 and 0.95). Concentration (g 100 g−1 FA) of VA resulted higher (+110%, P < 0.039) in Mod-Mi (2.42) compared to Reg-Mi (1.15). Total CLA content (g 100 g−1 FA) increased (P < 0.036) from 0.66 in Reg-Mi to 1.36 in Mod-Mi (+106%). Levels (g 100 g−1) of α-linolenic were higher (P < 0.004) in Reg-Mi (0.34) compared to Mod-Mi (0.29). The omega-6/omega-3 ratio was not changed (P < 0.13) averaging 5.98 in R-Mi and 7.18 in M-Mi. Oleic acid (cis-9 C18:1) content (g 100 g−1) remained unchanged (P < 0.504) averaging 21.99 in Reg-Mi and 22.86 in Mod-Mi. Composition of FA of the Mod-DCh was highly correlated (R2 = 0.999) with FA profile from its original Mod-Mi. A serving of the M-DCh (30 g) theoretically involved a 12.1% reduction in total fat consumption with 16.9% less in SF intake compared to the Reg-Ch. A serving of the M-DCh could putatively increase total CLA consumption by 72.7% compared to the Reg-DCh. Compared to Reg-Yo, a portion (178 g) of the Mod-Yo could increase (69.4%) total CLA intake. The nutritional value of milk fat was improved by feeding a blend of PUFA oils to confined dairy cows and the consumption of the mofified dairy products obtained could promote a lower intake of the potentially atherogenic saturated FA and some increase in healthy FA ingestion.eng
dc.formatapplication/pdfeng
dc.language.isoenges_AR
dc.rightsinfo:eu-repo/semantics/openAccesseng
dc.sourceOpen journal of animal sciences 10 (1) : 182-202. (January 2020)es_AR
dc.subjectDairy Cowseng
dc.subjectVacas Lecherases_AR
dc.subjectFish Oilseng
dc.subjectAceites de Pescadoes_AR
dc.subjectSoybean Oiles_AR
dc.subjectAceite de Sojaes_AR
dc.subjectSaturated Fatseng
dc.subjectGrasa Saturadaes_AR
dc.subjectLinoleic Acideng
dc.subjectÁcido Linoléicoes_AR
dc.subjectCheeseeng
dc.subjectQuesoes_AR
dc.subjectMilkeng
dc.subjectLechees_AR
dc.subjectMilk Productseng
dc.subjectProductos Lácteoses_AR
dc.subject.otherYogurtes_AR
dc.titleImproving concentration of healthy fatty acids in milk, cheese and yogurt by adding a blend of soybean and fish oils to the ration of confined dairy cowses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.description.filFil: Gagliostro, Gerardo Antonio. Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Balcarce. Area de Producción Animal. Balcarce; Argentina.es_AR
dc.description.filFil: Antonacci, Liliana Elisabet. Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Balcarce. Area de Producción Animal. Balcarce; Argentina.es_AR
dc.description.filFil: Perez, Carolina Daiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto Tecnología de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.es_AR
dc.description.filFil: Rossetti, Luciana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto Tecnología de Alimentos; Argentina.es_AR
dc.description.filFil: Carabajal, Augusto. Establecimiento Agroindustrial Talar. Laguna del Sauce. Departamento de Maldonado; Uruguayes_AR
dc.subtypecientifico


Files in this item

Thumbnail

This item appears in the following Collection(s)

common

Show simple item record