Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  •  
    • español
    • English
  • Mi Cuenta
Acerca deAutoresTítulosTemasColeccionesComunidades☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver ítem 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires SurEEA BalcarceArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • Inicio
  • Centros Regionales y EEAs
  • Centro Regional Buenos Aires Sur
  • EEA Balcarce
  • Artículos científicos
  • Ver ítem

New insights into wood anatomy and function relationships: how Eucalyptus challenges what we already know

Resumen
Multispecies surveys have shown that there is a weak but significant trade-off between xylem efficiency and safety in woody species, with no species maximizing both attributes at the same time. Relationships between xylem structure and function are studied mostly at the interspecific level, with few studies considering the relationships at the intraspecific level, particularly in angiosperms. Studies have shown that relationships between xylem anatomy or [ver mas...]
Multispecies surveys have shown that there is a weak but significant trade-off between xylem efficiency and safety in woody species, with no species maximizing both attributes at the same time. Relationships between xylem structure and function are studied mostly at the interspecific level, with few studies considering the relationships at the intraspecific level, particularly in angiosperms. Studies have shown that relationships between xylem anatomy or Wood density and vulnerability to cavitation (which determines xylem safety) observed in multi-species surveys may be different to those observed within a species. This raises the question about the value of multispecies studies to shed light over what is adaptive within a given species, the organization level at which natural and human selection operates. To contribute to this debate, we studied xylem structure and function in four Eucalyptus species, and made focus within one of them, E. globulus, to determine if patterns observed at the interspecific level are also held within a species. Eucalyptus species have a xylem composed by solitary vessels surrounded and connected to imperforate tracheary cells and parenchyma, a particular anatomy poorly known in terms of its function. Correlation analyses revealed that the trends observed between vessel size (mean and distribution) and vulnerability to cavitation are similar at the interspecific and intraspecific levels. Moreover, no trade-off has been observed between xylem efficiency (maximum hydraulic conductivity) and safety (water potential at 12% and 50% of hydraulic conductivity loss), but the opposite trend: individuals with mean larger vessels presented lower vulnerability to cavitation. Cells around vessels (parenchyma, vasicentric tracheids, fibertracheids) could be involved in this phenomenon since they correlate both with maximum hydraulic conductivity (positively) and vulnerability to cavitation (negatively) at the interspecific level. In addition, large xylem vessels presented smaller pits than small xylem vessels. This suggests that pit size is involved in the lack of trade-off between xylem safety and efficiency. Finally, vulnerability to cavitation was correlated with branch and stem wood density of the same tree, but correlations had opposite sign depending on the plant organ. These results provide new insights into the relationships between wood structure and function of angiosperm species. [Cerrar]
Thumbnail
Autor
Fernandez, María Elena;   Barotto, Antonio José;   Martinez Meier, Alejandro;   Gyenge, Javier;   Teson, Natalia;   Quiñones Martorello, Adriana;   Merlo, Esther;   Dalla Salda, Guillermina;   Rozenberg, Philippe;   Monteoliva, Silvia Estela;  
Fuente
Forest Ecology and Management 454 : 117638 (2019)
Fecha
2019-12-15
Editorial
Elsevier
ISSN
0378-1127
URI
http://hdl.handle.net/20.500.12123/6704
https://www.sciencedirect.com/science/article/pii/S0378112719313362
DOI
https://doi.org/10.1016/j.foreco.2019.117638
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Resistencia a la Sequía; Drought resistance; Xilema; Xylem; Eucalyptus; Densidad de la Madera;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadatos
Mostrar el registro completo del ítem