Mostrar el registro sencillo del ítem

resumen

Resumen
The symbiotic relationship between legumes and nitrogen-fixing rhizobia induces local and systemic responses, which ultimately lead to nodule formation. The autoregulation of nodulation (AON) is a systemic mechanism related to innate immunity that controls nodule development and involves different components ranging from hormones, peptides, receptors to small RNAs. Here, we characterized a rapid systemic redox changes induced during soybean-Bradyrhizobium [ver mas...]
dc.contributor.authorFernandez Göbel, Tadeo Francisco
dc.contributor.authorDeanna, Rocío
dc.contributor.authorMuñoz, Nacira Belen
dc.contributor.authorRobert, German
dc.contributor.authorAsurmendi, Sebastian
dc.contributor.authorLascano, Hernan Ramiro
dc.date.accessioned2019-10-10T15:09:28Z
dc.date.available2019-10-10T15:09:28Z
dc.date.issued2019-02
dc.identifier.issn1664-462X
dc.identifier.otherhttps://doi.org/10.3389/fpls.2019.00141
dc.identifier.urihttps://www.frontiersin.org/articles/10.3389/fpls.2019.00141/full
dc.identifier.urihttp://hdl.handle.net/20.500.12123/6090
dc.description.abstractThe symbiotic relationship between legumes and nitrogen-fixing rhizobia induces local and systemic responses, which ultimately lead to nodule formation. The autoregulation of nodulation (AON) is a systemic mechanism related to innate immunity that controls nodule development and involves different components ranging from hormones, peptides, receptors to small RNAs. Here, we characterized a rapid systemic redox changes induced during soybean-Bradyrhizobium japonicum symbiotic interaction. A transient peak of reactive oxygen species (ROS) generation was found in soybean leaves after 30 min of root inoculation with B. japonicum. The ROS response was accompanied by changes in the redox state of glutathione and by activation of antioxidant enzymes. Moreover, the ROS peak and antioxidant enzyme activation were abolished in leaves by the addition, in either root or leaf, of DPI, an NADPH oxidase inhibitor. Likewise, these systemic redox changes primed the plant increasing its tolerance to photooxidative stress. With the use of non-nodulating nfr5-mutant and hyper-nodulating nark-mutant soybean plants, we subsequently studied the systemic redox changes. The nfr5-mutant lacked the systemic redox changes after inoculation, whereas the nark-mutant showed a similar redox systemic signaling than the wild type plants. However, neither nfr5- nor nark-mutant exhibited tolerance to photooxidative stress condition. Altogether, these results demonstrated that (i) the early redox systemic signaling during symbiotic interaction depends on a Nod factor receptor, and that (ii) the induced tolerance response depends on the AON mechanisms.eng
dc.formatapplication/pdfeng
dc.language.isospaes_AR
dc.publisherFrontiers Mediaeng
dc.relationinfo:eu-repograntAgreement/INTA/PNBIO/1131022/AR./Genómica funcional y biología de sistemas.es_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceFrontiers in plant science 10: 141 (2019 Feb 15)es_AR
dc.subjectRhizobiaceaees_AR
dc.subjectRhizobiumes_AR
dc.subjectSymbiosiseng
dc.subjectSimbiosises_AR
dc.subjectRoot Nodulationeng
dc.subjectNodulaciónes_AR
dc.subjectBradyrhizobium Japonicumes_AR
dc.subjectSoybeanseng
dc.subjectSojaes_AR
dc.subjectRedox Potentialeng
dc.subjectPotencial Redox
dc.subject.otherISR/PGPR
dc.titleRedox systemic signaling and induced tolerance responses during soybean–bradyrhizobium japonicum interaction: involvement of nod factor receptor and autoregulation of nodulationeng
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.description.origenInstituto de Biotecnologíaes_AR
dc.description.filFil: Fernandez Göbel, Tadeo Francisco. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina.es_AR
dc.description.filFil: Deanna, Rocío. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Ciencias Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Muñoz, Nacira Belen. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentinaes_AR
dc.description.filFil: Robert, German. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentinaes_AR
dc.description.filFil: Asurmendi, Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Lascano, Hernan Ramiro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentinaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess