Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  •  
    • español
    • English
  • Mi Cuenta
Acerca deAutoresTítulosTemasColeccionesComunidades☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver ítem 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires NorteEEA General VillegasArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • Inicio
  • Centros Regionales y EEAs
  • Centro Regional Buenos Aires Norte
  • EEA General Villegas
  • Artículos científicos
  • Ver ítem

Leaf protein allocation across the canopy and during senescence in earlier and later senescing maize hybrids, and implications for the use of chlorophyll as a proxy of leaf N

Resumen
Leaf chlorophyll (chl) and protein distribution were analyzed throughout grain filling in four modern maize hybrids with contrasting senescence behavior, at three different canopy levels and at low-N (LN, 18 kg N ha−1) and high-N (HN, 218 kg N ha−1) fertilization levels. Chl content assessed by SPAD resembled protein content only at LN, with delayed senescing genotypes having more leaf protein content than reference genotypes. Across N levels, relative [ver mas...]
Leaf chlorophyll (chl) and protein distribution were analyzed throughout grain filling in four modern maize hybrids with contrasting senescence behavior, at three different canopy levels and at low-N (LN, 18 kg N ha−1) and high-N (HN, 218 kg N ha−1) fertilization levels. Chl content assessed by SPAD resembled protein content only at LN, with delayed senescing genotypes having more leaf protein content than reference genotypes. Across N levels, relative chl content negatively related to light intensity (r2 = 0.59, P < 0.001), while relative protein content did only for the lowest part of the canopy (r2 = 0.54, P < 0.001), suggesting protein distribution in the canopy could be further improved. Relative Rubisco/LHCII partitioning increased from lower to upper leaves (P < 0.09) and differed among genotypes (P < 0.05) with no link to senescence behavior. Photosynthetic electron transport rates were lower at LN and differed between genotypes (P < 0.05) including those with similar leaf protein contents. Chl and protein contents were related across the entire dataset (r2 = 0.53, P < 0.001) but the slope (b) of this relationship varied widely depending on the leaf position (b = 0.026–0.019), the senescence stage (b = 0.014–0.020), the N level (b = 0.035–0.026) and the hybrid (b = 0.016–0.033). Our results suggest that in modern maize hybrids, leaf N utilization can be further improved and that genotypic together with other sources of variation should be included as specific variables in SPAD-based predictions of leaf N content. [Cerrar]
Thumbnail
Autor
Antonietta, Mariana;   Giron, Paula;   Costa, María Lorenza;   Guiamet, Juan José;  
Fuente
Acta Physiologiae Plantarum 41 : 150 (September 2019)
Fecha
2019-09
Editorial
Springer
ISSN
0137-5881
1861-1664
URI
https://link.springer.com/article/10.1007/s11738-019-2943-5
http://hdl.handle.net/20.500.12123/5687
DOI
https://doi.org/10.1007/s11738-019-2943-5
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Maíz; Maize; Avejentamiento; Senescence; Nitrógeno; Nitrogen; Clorofilas; Chlorophylls; Hojas; Leaves; Proteínas; Proteins;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadatos
Mostrar el registro completo del ítem