Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login

Inta Digital

Repositorio InstitucionalBiblioteca Digital
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires SurEEA BalcarceArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros Regionales y EEAs
  • Centro Regional Buenos Aires Sur
  • EEA Balcarce
  • Artículos científicos
  • View Item

Variabilidad espacial de suelo a escala de lote y su relación con los rendimientos

Abstract
El manejo sitio-específico dentro de un lote requiere delimitar zonas homogéneas. Múltiples variables, tales como algunas propiedades del suelo, son usadas para la zonificación. El análisis de “cluster fuzzy k-means” (CFK) es aquí utilizado para la delimitación de zonas. El CFK puede aplicarse sobre las variables originales o sobre variables sintéticas derivadas del análisis de componentes principales (PCA). Sin embrago, PCA no considera la presencia de [ver mas...]
El manejo sitio-específico dentro de un lote requiere delimitar zonas homogéneas. Múltiples variables, tales como algunas propiedades del suelo, son usadas para la zonificación. El análisis de “cluster fuzzy k-means” (CFK) es aquí utilizado para la delimitación de zonas. El CFK puede aplicarse sobre las variables originales o sobre variables sintéticas derivadas del análisis de componentes principales (PCA). Sin embrago, PCA no considera la presencia de correlaciones espaciales. Por ello, proponemos el uso del método MULTISPATI-PCA, una nueva forma de PCA que contempla la información espacial. El método también es usado en el análisis de correlaciones canónicas para cuantificar la magnitud de la relación lineal entre variables de suelo y rendimientos. En este trabajo evaluamos la capacidad de cinco procedimientos multivariados para delimitar zonas homogéneas dentro de un lote: el análisis CFK sobre variables de suelo originales, CFK sobre componentes principales del PCA y sobre componentes principales espaciales. Finalmente incluimos particiones de los sitios del lote basadas en percentiles de variables canónicas que correlacionan rendimientos con componentes principales o con componentes principales espaciales, alternativamente. Se compararon las diferencias de rendimientos entre las zonas delimitadas por cada método. Se trabajó con datos de conductividad eléctrica aparente en dos profundidades (0-30 cm y 0-90 cm), elevación, profundidad de tosca y rendimientos de soja y trigo. El análisis de conglomerados sobre las componentes principales espaciales fue el mejor procedimiento para delimitar zonas homogéneas. [Cerrar]
 
Site-specific management requires delineation of homogeneous zones within the field. Several variables, such as some soil properties, are used for zonification. Fuzzy k-means cluster analysis (FKC) is here used to delimit zones. FKC is applied to original variables and to synthetic variables obtained with regular principal component analysis (PCA). However, PCA does not consider the presence of spatial correlations. We propose to use, MULTISPATI-PCA as an [ver mas...]
Site-specific management requires delineation of homogeneous zones within the field. Several variables, such as some soil properties, are used for zonification. Fuzzy k-means cluster analysis (FKC) is here used to delimit zones. FKC is applied to original variables and to synthetic variables obtained with regular principal component analysis (PCA). However, PCA does not consider the presence of spatial correlations. We propose to use, MULTISPATI-PCA as an extension of PCA that considers spatial information. The method is also used in a canonical correlation analysis to quantify the magnitude of the linear relationship between crop yields and soil variables. In this paper, we evaluate the capacity of five multivariate procedures to delineate zones: FKC on soil variables, FKC on principal components and FKC on spatial principal components. Finally, we include field-site partitions based on percentiles of canonical variables that correlate yields with principal components or spatial principal components, alternatively. Yield differences between the delineated zones by each method were compared. We worked with apparent electrical conductivity data in two depths 0-30 cm and 0-90 cm, elevation, hardpan depth and soybean and wheat yields. Cluster analysis on spatial principal components, was the best procedure to delineate zones. [Cerrar]
 
Thumbnail
Author
Córdoba, Mariano Augusto;   Bruno, Cecilia Inés;   Costa, José Luis;   Balzarini, Mónica Graciela;  
Fuente
RIA, 42 (1) : 47-53
Date
2016-03-23
Editorial
Gerencia de Comunicación e Imagen Institucional, DNA SICC, INTA
URI
http://hdl.handle.net/20.500.12123/431
http://www.scielo.org.ar/pdf/ria/v42n1/v42n1a08.pdf
http://www.redalyc.org/articulo.oa?id=86445998011
http://ria.inta.gob.ar/trabajos/variabilidad-espacial-de-suelo-escala-de-lote-y-su-relacion-con-los-rendimientos
Formato
pdf
Tipo de documento
artículo
Derechos de acceso
Abierto
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record