Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCIAP. Centro de Investigaciones AgropecuariasInstituto de Fisiología y Recursos Genéticos VegetalesArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros e Institutos de Investigación
  • CIAP. Centro de Investigaciones Agropecuarias
  • Instituto de Fisiología y Recursos Genéticos Vegetales
  • Artículos científicos
  • View Item

Changes in the relationship between temperature during the seed‐filling period and soya bean seed isoflavones under water‐deficit conditions

Abstract
Isoflavones have been shown to have health‐promoting activities in humans and are particularly abundant in soya bean. This study was conducted to determine how water deficit during seed fill affects the already known relationship between temperature and, alternately, solar radiation with soya bean seed isoflavone content. Isoflavone profile was analysed from seed samples of commercial cultivars grown in 76 environments in Argentina (29–38°S). Significant [ver mas...]
Isoflavones have been shown to have health‐promoting activities in humans and are particularly abundant in soya bean. This study was conducted to determine how water deficit during seed fill affects the already known relationship between temperature and, alternately, solar radiation with soya bean seed isoflavone content. Isoflavone profile was analysed from seed samples of commercial cultivars grown in 76 environments in Argentina (29–38°S). Significant explanatory multiple linear regressions were detected for total isoflavones (TI), aglycones (AGL), glucosides (GLC), malonyl glucosides (MAL) and acetyl glucosides (ACE) regarding the following: temperature during seed fill (TmR5R7) and precipitation minus potential evapotranspiration during the reproductive period (pp‐PETR1R7), as well as for the combinations of these climatic variables. Cumulative solar radiation predicted isoflavone content but was less robust than TmR5R7 and pp‐PETR1R7. To our knowledge, this is the first report of changes in the relationship between TI, as well as AGL, GLC, MAL, and ACE and TmR5R7 as a function of drought in the field. When pp‐PETR1R7 was below 70 mm (indicating drought), TI, as well as AGL, GLC, MAL, and ACE decreased linearly with rising temperatures and with increasing water deficit (decreasing values of pp‐PETR1R7), with both climatic variables exhibiting additive effects on isoflavones. Our results also suggest that water deficit (estimated by pp‐PETR1R7) would be important for modelling the relationship between temperature and soya bean seed isoflavones in rainfed crops. [Cerrar]
Thumbnail
Author
Carrera, Constanza Soledad;   Dardanelli, Julio Luis;  
Fuente
Journal of agronomy and crop science 202 (6) : 421-432. (December 2016)
Date
2016-12
Editorial
Blackwell
ISSN
0931-2250
URI
http://hdl.handle.net/20.500.12123/3657
https://onlinelibrary.wiley.com/doi/abs/10.1111/jac.12147
DOI
https://doi.org/10.1111/jac.12147
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Soja; Soybeans; Glycine Max; Isoflavones; Isoflavonas; Drought; Sequía; Seed Filling; Hinchamiento de la Semilla; Temperature; Temperatura; Multi-environment Trials; Nutraceutical Quality; Calidad Nutracéutica;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record