Mostrar el registro sencillo del ítem
resumen
Resumen
Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes
[ver mas...]
| dc.contributor.author | Silveira, Eduarda M.O. | |
| dc.contributor.author | Radeloff, Volker C. | |
| dc.contributor.author | Martinuzzi, Sebastián | |
| dc.contributor.author | Martinez Pastur, Guillermo J. | |
| dc.contributor.author | Bono, Julieta | |
| dc.contributor.author | Politi, Natalia | |
| dc.contributor.author | Lizarraga, Leónidas | |
| dc.contributor.author | Rivera, Luis O. | |
| dc.contributor.author | Ciuffoli, Lucía | |
| dc.contributor.author | Rosas, Yamina M. | |
| dc.contributor.author | Olah, Ashley M. | |
| dc.contributor.author | Gavier Pizarro, Gregorio Ignacio | |
| dc.contributor.author | Pidgeon, Anna M. | |
| dc.date.accessioned | 2025-07-25T18:08:43Z | |
| dc.date.available | 2025-07-25T18:08:43Z | |
| dc.date.issued | 2023-02-01 | |
| dc.identifier.issn | 0034-4257 (impreso) | |
| dc.identifier.issn | 1879-0704 (online) | |
| dc.identifier.other | https://doi.org/10.1016/j.rse.2022.113391 | |
| dc.identifier.uri | http://hdl.handle.net/20.500.12123/23183 | |
| dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0034425722004977?via%3Dihub | |
| dc.description.abstract | Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country. | eng |
| dc.format | application/pdf | es_AR |
| dc.language.iso | eng | es_AR |
| dc.publisher | Elsevier | es_AR |
| dc.rights | info:eu-repo/semantics/openAccess | es_AR |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | es_AR |
| dc.source | Remote Sensing of Environment 285 : 113391 (February 2023) | es_AR |
| dc.subject | Bosques Primarios | es_AR |
| dc.subject | Primary Forests | eng |
| dc.subject | Mapa | es_AR |
| dc.subject | Maps | eng |
| dc.subject | Área Basal | es_AR |
| dc.subject | Basal Area | eng |
| dc.subject | Ordenación Forestal | es_AR |
| dc.subject | Forest Management | eng |
| dc.subject | Conservación de Montes | es_AR |
| dc.subject | Forest Conservation | eng |
| dc.subject | Radar | es_AR |
| dc.subject.other | Native Forest | eng |
| dc.subject.other | SAR Sentinel-1 | es_AR |
| dc.subject.other | Sentinel-2 | es_AR |
| dc.subject.other | Vegetation Metrics | eng |
| dc.title | Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery | eng |
| dc.type | info:ar-repo/semantics/artículo | es_AR |
| dc.type | info:eu-repo/semantics/article | es_AR |
| dc.type | info:eu-repo/semantics/publishedVersion | es_AR |
| dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | es_AR |
| dc.description.origen | Instituto de Fisiología y Recursos Genéticos Vegetales | es_AR |
| dc.description.fil | Fil: Silveira, Eduarda M.O. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos | es_AR |
| dc.description.fil | Fil: Radeloff, Volker C. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos | es_AR |
| dc.description.fil | Fil: Martinuzzi, Sebastián. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos | es_AR |
| dc.description.fil | Fil: Martinez Pastur, Guillermo J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigaciones Científicas (CADIC); Argentina | es_AR |
| dc.description.fil | Fil: Bono, Julieta. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina | es_AR |
| dc.description.fil | Fil: Politi, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina | es_AR |
| dc.description.fil | Fil: Lizarraga, Leónidas. Administración de Parques Nacionales. Dirección Regional Noroeste; Argentina | es_AR |
| dc.description.fil | Fil: Rivera, Luis O. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentina | es_AR |
| dc.description.fil | Fil: Ciuffoli, Lucía. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentina | es_AR |
| dc.description.fil | Fil: Rosas, Yamina M. University of Copenhagen. Department of Geosciences and Natural Resource Management; Dinamarca | es_AR |
| dc.description.fil | Fil: Olah, Ashley M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos | es_AR |
| dc.description.fil | Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina | es_AR |
| dc.description.fil | Fil: Pidgeon, Anna M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos | es_AR |
| dc.subtype | cientifico |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
common
-
Artículos científicos [161]

