Mostrar el registro sencillo del ítem

resumen

Resumen
Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes [ver mas...]
dc.contributor.authorSilveira, Eduarda M.O.
dc.contributor.authorRadeloff, Volker C.
dc.contributor.authorMartinuzzi, Sebastián
dc.contributor.authorMartinez Pastur, Guillermo J.
dc.contributor.authorBono, Julieta
dc.contributor.authorPoliti, Natalia
dc.contributor.authorLizarraga, Leónidas
dc.contributor.authorRivera, Luis O.
dc.contributor.authorCiuffoli, Lucía
dc.contributor.authorRosas, Yamina M.
dc.contributor.authorOlah, Ashley M.
dc.contributor.authorGavier Pizarro, Gregorio Ignacio
dc.contributor.authorPidgeon, Anna M.
dc.date.accessioned2025-07-25T18:08:43Z
dc.date.available2025-07-25T18:08:43Z
dc.date.issued2023-02-01
dc.identifier.issn0034-4257 (impreso)
dc.identifier.issn1879-0704 (online)
dc.identifier.otherhttps://doi.org/10.1016/j.rse.2022.113391
dc.identifier.urihttp://hdl.handle.net/20.500.12123/23183
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0034425722004977?via%3Dihub
dc.description.abstractDetailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is challenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investigation) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherElsevieres_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceRemote Sensing of Environment 285 : 113391 (February 2023)es_AR
dc.subjectBosques Primarioses_AR
dc.subjectPrimary Forestseng
dc.subjectMapaes_AR
dc.subjectMapseng
dc.subjectÁrea Basales_AR
dc.subjectBasal Areaeng
dc.subjectOrdenación Forestales_AR
dc.subjectForest Managementeng
dc.subjectConservación de Monteses_AR
dc.subjectForest Conservationeng
dc.subjectRadares_AR
dc.subject.otherNative Foresteng
dc.subject.otherSAR Sentinel-1es_AR
dc.subject.otherSentinel-2es_AR
dc.subject.otherVegetation Metricseng
dc.titleNationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imageryeng
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenInstituto de Fisiología y Recursos Genéticos Vegetaleses_AR
dc.description.filFil: Silveira, Eduarda M.O. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidoses_AR
dc.description.filFil: Radeloff, Volker C. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidoses_AR
dc.description.filFil: Martinuzzi, Sebastián. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidoses_AR
dc.description.filFil: Martinez Pastur, Guillermo J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigaciones Científicas (CADIC); Argentinaes_AR
dc.description.filFil: Bono, Julieta. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentinaes_AR
dc.description.filFil: Politi, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentinaes_AR
dc.description.filFil: Lizarraga, Leónidas. Administración de Parques Nacionales. Dirección Regional Noroeste; Argentinaes_AR
dc.description.filFil: Rivera, Luis O. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Ecoregiones Andinas (INECOA); Argentinaes_AR
dc.description.filFil: Ciuffoli, Lucía. Ministerio de Ambiente y Desarrollo Sostenible de la Nación. Dirección Nacional de Bosques; Argentinaes_AR
dc.description.filFil: Rosas, Yamina M. University of Copenhagen. Department of Geosciences and Natural Resource Management; Dinamarcaes_AR
dc.description.filFil: Olah, Ashley M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidoses_AR
dc.description.filFil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentinaes_AR
dc.description.filFil: Pidgeon, Anna M. University of Wisconsin-Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidoses_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess