Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires SurEEA BordenaveArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Buenos Aires Sur
- EEA Bordenave
- Artículos científicos
- Ver ítem
Utilización de índices de vegetación satelitales para predecir niveles de rendimiento de Vicia villosa Roth = Use of satellite vegetation indices to predict yield level of Vicia villosa Roth
Resumen
En este trabajo se combinan las imágenes satelitales, los algoritmos de aprendizaje de máquina y las mediciones de campo para analizar si es posible generar un modelo de predicción del rendimiento de la leguminosa Vicia villosa Roth (VV) antes de su cosecha. En un estudio previo, se empleó información satelital de diferentes fechas a lo largo del ciclo fenológico completo de VV cultivada en varios lotes del partido de Guaminí (provincia de Buenos Aires) y
[ver mas...]
En este trabajo se combinan las imágenes satelitales, los algoritmos de aprendizaje de máquina y las mediciones de campo para analizar si es posible generar un modelo de predicción del rendimiento de la leguminosa Vicia villosa Roth (VV) antes de su cosecha. En un estudio previo, se empleó información satelital de diferentes fechas a lo largo del ciclo fenológico completo de VV cultivada en varios lotes del partido de Guaminí (provincia de Buenos Aires) y se encontró una estrecha relación entre la serie temporal de los índices de vegetación y el rinde de dichos cultivos. En base a esos resultados, se evalúa la posibilidad de predecir el rendimiento a partir de nueve fechas de la campaña 2021-2022 entre la siembra y la cosecha. Las mismas se asocian de distintas maneras determinando su impacto sobre la precisión del modelo entrenado. Los resultados evidencian que con el monitoreo remoto de cinco fechas es posible clasificar adecuadamente el rendimiento de VV. Tener un modelo de predicción ayudaría en las decisiones in-situ optimizando el uso que puede darse al cultivo de VV (pastoreo directo, forraje o producción de semillas) en función del rendimiento esperado.
[Cerrar]
This study combines satellite imagery, machine learning algorithms, and field measurements to analyze whether it is possible to generate a yield prediction model for the legume Vicia villosa Roth (VV) before harvest. In a previous study, satellite data from different dates throughout the entire phenological cycle of VV grown in several plots in the Guaminí district (Buenos Aires province) was used and a close relationship was found between the time series
[ver mas...]
This study combines satellite imagery, machine learning algorithms, and field measurements to analyze whether it is possible to generate a yield prediction model for the legume Vicia villosa Roth (VV) before harvest. In a previous study, satellite data from different dates throughout the entire phenological cycle of VV grown in several plots in the Guaminí district (Buenos Aires province) was used and a close relationship was found between the time series of vegetation indices and the yield of these crops. Based on these results, the possibility of predicting yield based on nine dates during the 2021-2022 season between sowing and harvest is evaluated. These dates are associated in different ways, determining their impact on the accuracy of the trained model.
The results show that remote monitoring of five dates makes it possible to adequately classify VV yield. Having a prediction model would help in on-site decisions by optimizing the use that can be given to the VV crop (direct grazing, forage or seed production) based on the expected yield.
[Cerrar]

Autor
Marini, Mario Fabian;
D'Amico, María Belén;
Calandrini, Guillermo Luis;
Renzi Pugni, Juan Pablo;
Chantre Balacca, Guillermo Ruben;
Fuente
SADIO Electronic Journal of Information and Operation Research 24 (2) : 18-32. (2025)
Fecha
2025-06
Editorial
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
ISSN
1514-6774
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Abierto
