resumen
Abstract
Anthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to
[ver mas...]
| dc.contributor.author | Alaggia, Francisco Guillermo | |
| dc.contributor.author | Innangi, Michele | |
| dc.contributor.author | Cavallero, Laura | |
| dc.contributor.author | Lopez, Dardo Ruben | |
| dc.contributor.author | Pontieri, Federica | |
| dc.contributor.author | Marzialetti, Flavio | |
| dc.contributor.author | Riera-Tatche, Ramon | |
| dc.contributor.author | Gamba, Paolo | |
| dc.contributor.author | Carranza, María Laura | |
| dc.date.accessioned | 2025-02-27T12:47:50Z | |
| dc.date.available | 2025-02-27T12:47:50Z | |
| dc.date.issued | 2025-02-21 | |
| dc.identifier.issn | 2072-4292 | |
| dc.identifier.other | https://doi.org/10.3390/rs17050748 | |
| dc.identifier.uri | http://hdl.handle.net/20.500.12123/21492 | |
| dc.identifier.uri | https://www.mdpi.com/2072-4292/17/5/748 | |
| dc.description.abstract | Anthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of alteration in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of theWest Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using linear mixed models. Spectral indices such as the BI (Brightness Index), NDWIGao (Normalized Difference Water Index), and MCARISent (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco Forest, which face extensive anthropogenic pressures. | eng |
| dc.format | application/pdf | es_AR |
| dc.language.iso | eng | es_AR |
| dc.publisher | MDPI | es_AR |
| dc.relation | info:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemas | es_AR |
| dc.rights | info:eu-repo/semantics/openAccess | es_AR |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | es_AR |
| dc.source | Remote Sensing 17 (5) : 748 (February 2025) | es_AR |
| dc.subject | Bosque Tropical | es_AR |
| dc.subject | Tropical Forests | eng |
| dc.subject | Bosque Seco | es_AR |
| dc.subject | Dry Forests | eng |
| dc.subject | Clorofila | es_AR |
| dc.subject | Chlorophylls | eng |
| dc.subject | Teledetección | |
| dc.subject | Remote Sensing | eng |
| dc.subject.other | Región Gran Chaco, Argentina | |
| dc.title | Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina | es_AR |
| dc.type | info:ar-repo/semantics/artículo | es_AR |
| dc.type | info:eu-repo/semantics/article | es_AR |
| dc.type | info:eu-repo/semantics/publishedVersion | es_AR |
| dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | es_AR |
| dc.description.origen | EEA Manfredi | es_AR |
| dc.description.fil | Fil: Alaggia, Francisco G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Campo Anexo Villa Dolores; Argentina. | es_AR |
| dc.description.fil | Fil: Innangi. Michele. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia | es_AR |
| dc.description.fil | Fil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentina | es_AR |
| dc.description.fil | Fil: López, Dardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentina | es_AR |
| dc.description.fil | Fil: Pontieri, Federica. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia | es_AR |
| dc.description.fil | Fil: Marzialetti, Flavio. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italia | es_AR |
| dc.description.fil | Fil: Riera-Tatche, Ramon. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italia | es_AR |
| dc.description.fil | Fil: Gamba, Paolo. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italia | es_AR |
| dc.description.fil | Fil: Carranza, María Laura. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia | es_AR |
| dc.description.fil | Fil: Carranza, María Laura. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italia | |
| dc.subtype | cientifico |
Files in this item
This item appears in the following Collection(s)
common
-
Artículos científicos [136]

