Show simple item record

resumen

Abstract
Anthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to [ver mas...]
dc.contributor.authorAlaggia, Francisco Guillermo
dc.contributor.authorInnangi, Michele
dc.contributor.authorCavallero, Laura
dc.contributor.authorLopez, Dardo Ruben
dc.contributor.authorPontieri, Federica
dc.contributor.authorMarzialetti, Flavio
dc.contributor.authorRiera-Tatche, Ramon
dc.contributor.authorGamba, Paolo
dc.contributor.authorCarranza, María Laura
dc.date.accessioned2025-02-27T12:47:50Z
dc.date.available2025-02-27T12:47:50Z
dc.date.issued2025-02-21
dc.identifier.issn2072-4292
dc.identifier.otherhttps://doi.org/10.3390/rs17050748
dc.identifier.urihttp://hdl.handle.net/20.500.12123/21492
dc.identifier.urihttps://www.mdpi.com/2072-4292/17/5/748
dc.description.abstractAnthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of alteration in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of theWest Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using linear mixed models. Spectral indices such as the BI (Brightness Index), NDWIGao (Normalized Difference Water Index), and MCARISent (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco Forest, which face extensive anthropogenic pressures.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherMDPIes_AR
dc.relationinfo:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemases_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceRemote Sensing 17 (5) : 748 (February 2025)es_AR
dc.subjectBosque Tropicales_AR
dc.subjectTropical Forestseng
dc.subjectBosque Secoes_AR
dc.subjectDry Forestseng
dc.subjectClorofilaes_AR
dc.subjectChlorophyllseng
dc.subjectTeledetección
dc.subjectRemote Sensingeng
dc.subject.otherRegión Gran Chaco, Argentina
dc.titleMulti-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentinaes_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenEEA Manfredies_AR
dc.description.filFil: Alaggia, Francisco G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Campo Anexo Villa Dolores; Argentina.es_AR
dc.description.filFil: Innangi. Michele. University of Molise. Department of Biosciences and Territory. EnviXLab; Italiaes_AR
dc.description.filFil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentinaes_AR
dc.description.filFil: López, Dardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentinaes_AR
dc.description.filFil: Pontieri, Federica. University of Molise. Department of Biosciences and Territory. EnviXLab; Italiaes_AR
dc.description.filFil: Marzialetti, Flavio. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italiaes_AR
dc.description.filFil: Riera-Tatche, Ramon. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italiaes_AR
dc.description.filFil: Gamba, Paolo. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italiaes_AR
dc.description.filFil: Carranza, María Laura. University of Molise. Department of Biosciences and Territory. EnviXLab; Italiaes_AR
dc.description.filFil: Carranza, María Laura. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italia
dc.subtypecientifico


Files in this item

Thumbnail

This item appears in the following Collection(s)

common

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess