Mostrar el registro sencillo del ítem

resumen

Resumen
The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first [ver mas...]
dc.contributor.authorAlvarez, María Paula
dc.contributor.authorBellis, Laura Marisa
dc.contributor.authorArcamone, Julieta Rocio
dc.contributor.authorSilvetti, Luna Emilce
dc.contributor.authorGavier Pizarro, Gregorio Ignacio
dc.date.accessioned2025-02-21T10:23:05Z
dc.date.available2025-02-21T10:23:05Z
dc.date.issued2025-01
dc.identifier.issn2352-9385
dc.identifier.otherhttps://doi.org/10.1016/j.rsase.2025.101485
dc.identifier.urihttp://hdl.handle.net/20.500.12123/21379
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S2352938525000382
dc.description.abstractThe ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first axes of a principal component analysis (PC1 and PC2)) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to CC (r2=0.58, rmse=14,5%), followed by DBHsum (r2=0.37, rmse=156.6) and NW (r2=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, CC estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherElsevieres_AR
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceRemote Sensing Applications: Society and Environment 37 : 101485. (January 2025)es_AR
dc.subjectBosqueses_AR
dc.subjectForestseng
dc.subjectBosque Secoes_AR
dc.subjectDry Forestseng
dc.subjectEcologíaes_AR
dc.subjectEcologyeng
dc.subjectÍndice Normalizado Diferencial de la Vegetaciónes_AR
dc.subjectNormalized Difference Vegetation Indexeng
dc.subjectTeledetecciónes_AR
dc.subjectRemote Sensingeng
dc.subject.otherNDVIeng
dc.titleEcological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variableses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenInstituto de Fisiología y Recursos Genéticos Vegetaleses_AR
dc.description.filFil: Alvarez, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Alvarez, María Paula. Universidad Nacional de Córdoba; Argentinaes_AR
dc.description.filFil: Alvarez, María Paula. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina.es_AR
dc.description.filFil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Bellis, Laura Marisa. Universidad Nacional de Córdoba; Argentinaes_AR
dc.description.filFil: Bellis, Laura Marisa. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina.es_AR
dc.description.filFil: Arcamone, Julieta Rocio. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentinaes_AR
dc.description.filFil: Arcamone, Julieta Rocio. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentinaes_AR
dc.description.filFil: Silvetti, Luna Emilce. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentinaes_AR
dc.description.filFil: Silvetti, Luna Emilce. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentinaes_AR
dc.description.filFil: Gavier Pizarro, Gregorio Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentinaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/restrictedAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/restrictedAccess