Mostrar el registro sencillo del ítem
resumen
Resumen
The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first
[ver mas...]
dc.contributor.author | Alvarez, María Paula | |
dc.contributor.author | Bellis, Laura Marisa | |
dc.contributor.author | Arcamone, Julieta Rocio | |
dc.contributor.author | Silvetti, Luna Emilce | |
dc.contributor.author | Gavier Pizarro, Gregorio Ignacio | |
dc.date.accessioned | 2025-02-21T10:23:05Z | |
dc.date.available | 2025-02-21T10:23:05Z | |
dc.date.issued | 2025-01 | |
dc.identifier.issn | 2352-9385 | |
dc.identifier.other | https://doi.org/10.1016/j.rsase.2025.101485 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12123/21379 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/abs/pii/S2352938525000382 | |
dc.description.abstract | The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first axes of a principal component analysis (PC1 and PC2)) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to CC (r2=0.58, rmse=14,5%), followed by DBHsum (r2=0.37, rmse=156.6) and NW (r2=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, CC estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors. | eng |
dc.format | application/pdf | es_AR |
dc.language.iso | eng | es_AR |
dc.publisher | Elsevier | es_AR |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_AR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | es_AR |
dc.source | Remote Sensing Applications: Society and Environment 37 : 101485. (January 2025) | es_AR |
dc.subject | Bosques | es_AR |
dc.subject | Forests | eng |
dc.subject | Bosque Seco | es_AR |
dc.subject | Dry Forests | eng |
dc.subject | Ecología | es_AR |
dc.subject | Ecology | eng |
dc.subject | Índice Normalizado Diferencial de la Vegetación | es_AR |
dc.subject | Normalized Difference Vegetation Index | eng |
dc.subject | Teledetección | es_AR |
dc.subject | Remote Sensing | eng |
dc.subject.other | NDVI | eng |
dc.title | Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables | es_AR |
dc.type | info:ar-repo/semantics/artículo | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type | info:eu-repo/semantics/publishedVersion | es_AR |
dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | es_AR |
dc.description.origen | Instituto de Fisiología y Recursos Genéticos Vegetales | es_AR |
dc.description.fil | Fil: Alvarez, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina | es_AR |
dc.description.fil | Fil: Alvarez, María Paula. Universidad Nacional de Córdoba; Argentina | es_AR |
dc.description.fil | Fil: Alvarez, María Paula. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina. | es_AR |
dc.description.fil | Fil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina | es_AR |
dc.description.fil | Fil: Bellis, Laura Marisa. Universidad Nacional de Córdoba; Argentina | es_AR |
dc.description.fil | Fil: Bellis, Laura Marisa. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina. | es_AR |
dc.description.fil | Fil: Arcamone, Julieta Rocio. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentina | es_AR |
dc.description.fil | Fil: Arcamone, Julieta Rocio. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina | es_AR |
dc.description.fil | Fil: Silvetti, Luna Emilce. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentina | es_AR |
dc.description.fil | Fil: Silvetti, Luna Emilce. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina | es_AR |
dc.description.fil | Fil: Gavier Pizarro, Gregorio Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina | es_AR |
dc.description.fil | Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina | es_AR |
dc.subtype | cientifico |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
common
-
Artículos científicos [137]