Mostrar el registro sencillo del ítem

resumen

Resumen
A timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn yield at different sites within a field. A test was conducted [ver mas...]
dc.contributor.authorPeralta, Nahuel Raúl
dc.contributor.authorAssefa, Yared
dc.contributor.authorDu, Juan
dc.contributor.authorBarden, Charles J.
dc.contributor.authorCiampitti, Ignacio A.
dc.date.accessioned2019-04-22T12:05:05Z
dc.date.available2019-04-22T12:05:05Z
dc.date.issued2016-10
dc.identifier.issn2072-4292
dc.identifier.otherhttps://doi.org/10.3390/rs8100848
dc.identifier.urihttps://www.mdpi.com/2072-4292/8/10/848
dc.identifier.urihttp://hdl.handle.net/20.500.12123/4937
dc.description.abstractA timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn yield at different sites within a field. A test was conducted on yield monitor data and RapidEye satellite imagery obtained for 22 cornfields located in five different counties (Clay, Dickinson, Rice, Saline, and Washington) of Kansas (total of 457 ha). Three basic tests were conducted on the data: (1) spatial dependence on each of the yield and vegetation indices (VIs) using Moran’s I test; (2) model selection for the relationship between imagery data and actual yield using ordinary least square regression (OLS) and spatial econometric (SPL) models; and (3) model validation for yield forecasting purposes. Spatial autocorrelation analysis (Moran’s I test) for both yield and VIs (red edge NDVI = NDVIre, normalized difference vegetation index = NDVIr, SRre = red-edge simple ratio, near infrared = NIR and green-NDVI = NDVIG) was tested positive and statistically significant for most of the fields (p < 0.05), except for one. Inclusion of spatial adjustment to model improved the model fit on most fields as compared to OLS models, with the spatial adjustment coefficient significant for half of the fields studied. When selected models were used for prediction to validate dataset, a striking similarity (RMSE = 0.02) was obtained between predicted and observed yield within a field. Yield maps could assist implementing more effective site-specific management tools and could be utilized as a proxy of yield monitor data. In summary, high-resolution satellite imagery data can be reasonably used to forecast yield via utilization of models that include spatial adjustment to inform precision agricultural management decisions.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherMDPIes_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceRemote Sensing 8 (10) : 848 (2016)es_AR
dc.subjectTécnicas de Predicciónes_AR
dc.subjectForecastingeng
dc.subjectImágenes por Satéliteses_AR
dc.subjectSatellite Imageryeng
dc.subjectMaízes_AR
dc.subjectMaizeeng
dc.subjectRendimientoes_AR
dc.subjectYieldseng
dc.subjectAgricultura de Precisiónes_AR
dc.subjectPrecision Agricultureeng
dc.titleMid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yieldes_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.description.origenEEA Balcarcees_AR
dc.description.filFil: Peralta, Nahuel Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Kansas State University. Department of Agronomy; Estados Unidoses_AR
dc.description.filFil: Assefa, Yared. Kansas State University. Department of Agronomy; Estados Unidoses_AR
dc.description.filFil: Du, Juan. Kansas State University. Department of Statistics; Estados Unidoses_AR
dc.description.filFil: Barden, Charles J. Kansas State University. Department of Horticulture and Natural Resources; Estados Unidoses_AR
dc.description.filFil: Ciampitti, Ignacio A. Kansas State University. Department of Agronomy; Estados Unidoses_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess