Mostrar el registro sencillo del ítem

resumen

Resumen
Land cover changes (LCC) are an important component of Global Change. LCC can be described not only by its occur-rence, but also by the land cover replacement, causal agent and change duration or recuperation. Nowadays, remote sensing offers the opportunity to assemble reliable time series, however this fails to make a characterization of LCC since the series represents dynamics due to the combination of several processes occurring simultaneously. In this [ver mas...]
dc.contributor.authorCampos, Alfredo Nicolas
dc.contributor.authorDi Bella, Carlos Marcelo
dc.date.accessioned2019-02-20T18:43:36Z
dc.date.available2019-02-20T18:43:36Z
dc.date.issued2012
dc.identifier.issn2151-1950
dc.identifier.issn2151-1969 (Online)
dc.identifier.other10.4236/jgis.2012.44044
dc.identifier.urihttp://hdl.handle.net/20.500.12123/4478
dc.identifier.urihttps://file.scirp.org/Html/11-8401156_22158.htm
dc.description.abstractLand cover changes (LCC) are an important component of Global Change. LCC can be described not only by its occur-rence, but also by the land cover replacement, causal agent and change duration or recuperation. Nowadays, remote sensing offers the opportunity to assemble reliable time series, however this fails to make a characterization of LCC since the series represents dynamics due to the combination of several processes occurring simultaneously. In this arti-cle we proposed an approach to the study of LCC using wavelet transform (WT) and MODIS vegetation time series. Through this work we have demonstrated the capacity of this tool in order to recognize and characterize four different LLC documented in scientific publications, presenting the results divided in frequency scales as interannual, seasonal and rapid changes. The information decomposed in frequency allows the interpretation of each involved process with-out the interference of others. The uses of WT in an image time series give us the possibility of joining temporal and spatial dimension in a single raster. Layers generated with WT might be used to pattern recognition in LCC and to im-prove an image classification.eng
dc.formatapplication/pdfeng
dc.language.isoeng
dc.publisherScientific Research Publishingeng
dc.rightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceJournal of geographic information system 4 (4) :ID: 22158. (2012)eng
dc.subjectLand Useeng
dc.subjectUtilización de la Tierraes_AR
dc.subjectVegetationeng
dc.subjectVegetaciónes_AR
dc.subjectRemote Sensingeng
dc.subjectTeledetecciónes_AR
dc.subjectModerate Resolution Imaging Spectroradiometereng
dc.subjectEspectrorradiómetro de Imágenes de Resolución Moderadaes_AR
dc.subjectLand Cover Changeeng
dc.subjectAlteración de la Cubierta Vegetales_AR
dc.subject.otherWavelet Transformeng
dc.subject.otherMODIS NDVI Serieseng
dc.titleMulti-Temporal analysis of remotely sensed information using waveletseng
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.description.origenInstituto de Clima y Aguaes_AR
dc.description.filFil: Campos, Alfredo Nicolas. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Buenos Aires. Departamento de Electrónica; Arentinaes_AR
dc.description.filFil: Di Bella, Carlos Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentinaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess