Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires NorteEEA Delta del ParanáArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Buenos Aires Norte
- EEA Delta del Paraná
- Artículos científicos
- Ver ítem
Soil volume and carbon storage shifts in drained and afforested wetlands of the Paraná River Delta
Resumen
Wetland ecosystems have a high carbon storage potential as a result of high primary productivity and low decomposition rates dictated by water saturation. In the herbaceous wetlands of the Paraná River Delta, drainage and afforestation with poplars represents one of the dominant land uses. We explored the effects of these interventions on the volume and carbon storage of the young sedimentary soils of the region. At three sites we identified paired stands
[ver mas...]
Wetland ecosystems have a high carbon storage potential as a result of high primary productivity and low decomposition rates dictated by water saturation. In the herbaceous wetlands of the Paraná River Delta, drainage and afforestation with poplars represents one of the dominant land uses. We explored the effects of these interventions on the volume and carbon storage of the young sedimentary soils of the region. At three sites we identified paired stands occupying similar landscape positions and soil types but subject to natural flooding and covered by natural herbaceous communities or drainage and flood control by dikes and covered by poplar plantations established 12, 17 and 19 years ago. Soil sampling at these sites revealed a reduction of the litter compartment (−86 %) and decreasing volume and porosity of its underlying mineral layer (0–10 cm in the wetland reduced to 0–4 cm in the plantation). Our comparisons of carbon storage accounted for these volumetric shifts by using accumulated mineral mass rather than depth as a reference, showing that tree plantations gained in the mineral soil (22 Mg C ha−1) almost as much as what they lost in the litter. These gains were particularly large at intermediate depths (4–43 cm in the plantations) were soil porosity remained unaffected and C was raised by 64 % explained by (1) the pulse of inputs from overlaying litter and organic layers subject to rapid decomposition and mobilization after drainage and (2) root colonization, since tree plantations had 75 % of their fine root biomass at these intermediate soil depths, whereas roots in the wetlands did not explore the mineral soil profile and were completely confined to the organic layer. A neutral C balance following wetland drainage and afforestation resulted from the opposing effects of aeration, favoring decomposition in the organic layer, root colonization and organic matter stabilization, favoring its accumulation in the mineral soil.
[Cerrar]
Autor
Ceballos, Dario Sebastian;
Frangi, Jorge L.;
Jobbagy Gampel, Esteban Gabriel;
Fuente
Biogeochemistry 112 (1–3) : 359–372 (March 2013)
Fecha
2013-03
ISSN
0168-2563
1573-515X
1573-515X
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Restringido
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)