Mostrar el registro sencillo del ítem

resumen

Resumen
Avena fatua is a cosmopolite weed species which produces severe yield losses in small-grain production systems in temperate and semiarid climates. In the semiarid region of Argentina, A. fatua field emergence patterns show great year-to-year variability mainly due to the effect of highly unpredictable precipitation regimes as well as a complex seedbank dormancy behavior regulated by both, genetic and environmental factors. Previously developed models for [ver mas...]
dc.contributor.authorBlanco, Anibal Manuel
dc.contributor.authorChantre Balacca, Guillermo Ruben
dc.contributor.authorLodovichi, Mariela Victoria
dc.contributor.authorBandoni, Jose Alberto
dc.contributor.authorLopez, Ricardo Luis
dc.contributor.authorVigna, Mario Raul
dc.contributor.authorGigon, Ramon
dc.contributor.authorSabbatini, Mario Ricardo
dc.date.accessioned2018-07-26T13:56:23Z
dc.date.available2018-07-26T13:56:23Z
dc.date.issued2014-01-24
dc.identifier.issn0304-3800
dc.identifier.otherhttps://doi.org/10.1016/j.ecolmodel.2013.10.013
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0304380013004808
dc.identifier.urihttp://hdl.handle.net/20.500.12123/2886
dc.description.abstractAvena fatua is a cosmopolite weed species which produces severe yield losses in small-grain production systems in temperate and semiarid climates. In the semiarid region of Argentina, A. fatua field emergence patterns show great year-to-year variability mainly due to the effect of highly unpredictable precipitation regimes as well as a complex seedbank dormancy behavior regulated by both, genetic and environmental factors. Previously developed models for the same agroecological system based on Non-Linear Regression techniques (NLR) and Artificial Neural Networks (ANN) were either unable to accurately predict field emergence or lacked explanatory power. The main objective of the present work is to develop a simple (i.e. parsimonious) model for A. fatua field emergence prediction for the semiarid region of Argentina based on the disaggregation of the dormancy release phase from the germination/pre-emergence growth processes, using easy accessible soil microclimate derived indices as input variables and observed cumulative field emergence data as output variable. The parsimony and predictive capability of the newly developed model were compared with NLR and ANN approaches developed by the same authors for the same agroecological system. Specifically, dormancy release was modeled as a logistic function of an after-ripening thermal-time index while germination/pre-emergence growth was represented by a logistic distribution of hydrothermal-time accumulation. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Due to its implementation simplicity and good convergence features, a Genetic Algorithm (GA) was adopted to solve the resulting optimization problem consisting on the minimization of the Mean Square Error (MSE) between training data and experimentally obtained field emergence data. The newly developed GA based approach resulted in a significantly more parsimonious model (BIC = −1.54) compared to ANN (BIC = −1.36) and NLR (BIC = −1.32) models. Model evaluation with independent data also showed a better predictive capacity of the GA approach (RMSE = 0.07) compared to NLR (RMSE = 0.19) and ANN (RMSE = 0.11) alternatives. These outcomes suggest the potential applicability of the proposed predictive tool in weed management decision support systems design.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_AR
dc.sourceEcological Modelling 272 : 293-300 (January 2014)es_AR
dc.subjectAvena Fatuaes_AR
dc.subjectMalezases_AR
dc.subjectWeedseng
dc.subjectGenéticaes_AR
dc.subjectGeneticseng
dc.subjectDormiciónes_AR
dc.subjectDormancyeng
dc.subjectGerminaciónes_AR
dc.subjectGerminationeng
dc.titleModeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approaches_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.description.origenEEA Bordenavees_AR
dc.description.filFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentinaes_AR
dc.description.filFil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentinaes_AR
dc.description.filFil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentinaes_AR
dc.description.filFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentinaes_AR
dc.description.filFil: López, Ricardo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentinaes_AR
dc.description.filFil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentinaes_AR
dc.description.filFil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Chacra Experimental Integrada Barrow; Argentinaes_AR
dc.description.filFil: Sabbatini, Mario Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentinaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem