Mostrar el registro sencillo del ítem

resumen

Resumen
Peaches ripen and deteriorate rapidly at room temperature. Therefore, refrigeration is used to slow these processes and to extend fruit market life; however, many fruits develop chilling injury (CI) during storage at low temperature. Given that cell membranes are likely sites of the primary effects of chilling, the lipidome of six peach varieties with different susceptibility to CI was analyzed under different postharvest conditions. By using liquid [ver mas...]
dc.contributor.authorBustamante, Claudia Anabel
dc.contributor.authorBrotman, Yavid
dc.contributor.authorMonti, Laura L.
dc.contributor.authorGabilondo, Julieta
dc.contributor.authorBudde, Claudio Olaf
dc.contributor.authorLara, María Valeria
dc.contributor.authorFernie, Alisdair R.
dc.contributor.authorDrincovich, María Fabiana
dc.date.accessioned2018-06-12T15:31:06Z
dc.date.available2018-06-12T15:31:06Z
dc.date.issued2018
dc.identifier.issn1399-3054
dc.identifier.issn0031-9317
dc.identifier.otherhttps://doi.org/10.1111/ppl.12665
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/abs/10.1111/ppl.12665
dc.identifier.urihttp://hdl.handle.net/20.500.12123/2604
dc.description.abstractPeaches ripen and deteriorate rapidly at room temperature. Therefore, refrigeration is used to slow these processes and to extend fruit market life; however, many fruits develop chilling injury (CI) during storage at low temperature. Given that cell membranes are likely sites of the primary effects of chilling, the lipidome of six peach varieties with different susceptibility to CI was analyzed under different postharvest conditions. By using liquid chromatography coupled to mass spectrometry (LC–MS), 59 lipid species were detected, including diacyl- and triacylglycerides. The decreases in fruit firmness during postharvest ripening were accompanied by changes in the relative amount of several plastidic glycerolipid and triacylglyceride species, which may indicate their use as fuels prior to fruit senescence. In addition, levels of galactolipids were also modified in fruits stored at 0∘C for short and long periods, reflecting the stabilization of plastidic membranes at low temperature. When comparing susceptible and resistant varieties, the relative abundance of certain species of the lipid classes phosphatidylethanolamine, phosphatidylcholine and digalactosyldiacylglycerol correlated with the tolerance to CI, reflecting the importance of the plasma membrane in the development of CI symptoms and allowing the identification of possible lipid markers for chilling resistance. Finally, transcriptional analysis of genes involved in galactolipid metabolism revealed candidate genes responsible for the observed changes after cold exposure. When taken together, our results highlight the importance of plastids in the postharvest physiology of fruits and provide evidence that lipid composition and metabolism have a profound influence on the cold response.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.relationinfo:eu-repograntAgreement/INTA/PNFRU/1105083/AR./Nuevas tecnologías para el mantenimiento de la calidad en la cosecha, acondicionamiento y logística de frutas frescas.es_AR
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_AR
dc.sourcePhysiologia plantarum, vol. 163. 2018. p. 2-17es_AR
dc.subjectDuraznoes_AR
dc.subjectPeacheseng
dc.subjectPrunus persicaes_AR
dc.subjectAlmacenamiento en Fríoes_AR
dc.subjectCold Storageeng
dc.subjectPostharvest Physiologyeng
dc.subjectFisiologia Postcosechaes_AR
dc.subjectMetabolismo de Lípidoses_AR
dc.subjectLipid Metabolismeng
dc.subjectDaño por Fríoes_AR
dc.subjectChilling Injuryeng
dc.subjectVariedadeses_AR
dc.subjectVarietieseng
dc.subjectMaduración en Postcosechaes_AR
dc.subjectPostharvest Ripeningeng
dc.titleDifferential lipidome remodeling during postharvest of peach varieties with different susceptibility to chilling injuryes_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.description.origenEEA San Pedroes_AR
dc.description.filFil: Bustamante, Claudia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentinaes_AR
dc.description.filFil: Brotman, Yariv. Ben Gurion University of the Negev. Department of Life Sciences; Israeles_AR
dc.description.filFil: Monti, Laura L. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentinaes_AR
dc.description.filFil: Gabilondo, Julieta. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentinaes_AR
dc.description.filFil: Budde, Claudio Olaf. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentinaes_AR
dc.description.filFil: Lara, Maria V. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentinaes_AR
dc.description.filFil: Fernie, Alisdair R. Max-Planck-Institut für Molekulare Pflanzenphysiologie; Alemaniaes_AR
dc.description.filFil: Drincovich, Maria Fabiana. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentinaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem