Mostrar el registro sencillo del ítem

resumen

Resumen
De novo assembly of transcriptomes from species without reference genome remains a common problem in functional genomics. While methods and algorithms for transcriptome assembly are continually being developed and published, the quality of de novo assemblies using short reads depends on the complexity of the transcriptome and is limited by several types of errors. One problem to overcome is the research gap regarding the best method to use in each study [ver mas...]
dc.contributor.authorGonzalez, Sergio Alberto
dc.contributor.authorRivarola, Maximo Lisandro
dc.contributor.authorRibone, Andrés Ignacio
dc.contributor.authorLew, Sergio Eduardo
dc.contributor.authorPaniego, Norma Beatriz
dc.date.accessioned2025-03-20T12:21:22Z
dc.date.available2025-03-20T12:21:22Z
dc.date.issued2024-12
dc.identifier.issn1177-9322
dc.identifier.otherhttps://doi.org/10.1177/11779322241274957
dc.identifier.urihttp://hdl.handle.net/20.500.12123/21747
dc.identifier.urihttps://journals.sagepub.com/doi/full/10.1177/11779322241274957
dc.description.abstractDe novo assembly of transcriptomes from species without reference genome remains a common problem in functional genomics. While methods and algorithms for transcriptome assembly are continually being developed and published, the quality of de novo assemblies using short reads depends on the complexity of the transcriptome and is limited by several types of errors. One problem to overcome is the research gap regarding the best method to use in each study to obtain high-quality de novo assembly. Currently, there are no established protocols for solving the assembly problem considering the transcriptome complexity. In addition, the accuracy of quality metrics used to evaluate assemblies remains unclear. In this study, we investigate and discuss how different variables accounting for the complexity of RNA-Seq data influence assembly results independently of the software used. For this purpose, we simulated transcriptomic short-read sequence datasets from high-quality full-length predicted transcript models with varying degrees of complexity. Subsequently, we conducted de novo assemblies using different assembly programs, and compared and classified the results using both reference-dependent and independent metrics. These metrics were assessed both individually and combined through multivariate analysis. The degree of alternative splicing and the fragment size of the paired-end reads were identified as the variables with the greatest influence on the assembly results. Moreover, read length and fragment size had different influences on the reconstruction of longer and shorter transcripts. These results underscore the importance of understanding the composition of the transcriptome under study, and making experimental design decisions related to the need to work with reads and fragments of different sizes. In addition, the choice of assembly software will positively impact the final assembly outcome. This selection will affect the completeness of represented genes and assembled isoforms, as well as contribute to error reduction.es_AR
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherSage Publicationses_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceBioinformatics and Biology Insights 18 : 1-13 (2024)es_AR
dc.subjectARNes_AR
dc.subjectRNAeng
dc.subjectTranscriptómicaes_AR
dc.subjectTranscriptomicseng
dc.subjectGenéticaes_AR
dc.subjectGeneticseng
dc.subjectModelos de Simulaciónes_AR
dc.subjectSimulation Modelseng
dc.subject.otherDe Novo Assemblyeng
dc.titleComprehensive Analysis of the Influence of Technical and Biological Variations on De Novo Assembly of RNA-Seq Datasetses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenInstituto de Biotecnologíaes_AR
dc.description.filFil: Gonzalez, Sergio Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnologia y Biología Molecular; Argentinaes_AR
dc.description.filFil: Gonzalez, Sergio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Rivarola, Maximo Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Ribone, Andrés Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Lew, Sergio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Lew, Sergio Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentinaes_AR
dc.description.filFil: Paniego, Norma Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentinaes_AR
dc.description.filFil: Paniego, Norma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess