Mostrar el registro sencillo del ítem
resumen
Resumen
Forest biodiversity conservation and species distribution modeling greatly benefit from broad-scale forest maps depicting tree species or forest types rather than just presence and absence of forest, or coarse classifications. Ideally, such maps would stem from satellite image classification based on abundant field data for both model training and accuracy assessments, but such field data do not exist in many parts of the globe. However, different forest
[ver mas...]
dc.contributor.author | Silveira, Eduarda M.O. | |
dc.contributor.author | Radeloff, Volker C. | |
dc.contributor.author | Martínez Pastur, Guillermo José | |
dc.contributor.author | Martinuzzi, Sebastián | |
dc.contributor.author | Politi, Natalia | |
dc.contributor.author | Lizarraga, Leonidas | |
dc.contributor.author | Rivera, Luis | |
dc.contributor.author | Gavier Pizarro, Gregorio Ignacio | |
dc.contributor.author | Yin, He | |
dc.contributor.author | Rosas, Yamina Micaela | |
dc.contributor.author | Calamari, Noelia Cecilia | |
dc.contributor.author | Navarro, María Fabiana | |
dc.contributor.author | Sica, Yanina Vanesa | |
dc.contributor.author | Olah, Ashley | |
dc.contributor.author | Bono, Julieta | |
dc.contributor.author | Pidgeon, Anna M. | |
dc.date.accessioned | 2024-08-09T10:06:43Z | |
dc.date.available | 2024-08-09T10:06:43Z | |
dc.date.issued | 2022-04-01 | |
dc.identifier.issn | 1051-0761 | |
dc.identifier.other | https://doi.org/10.1002/eap.2526 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12123/18874 | |
dc.identifier.uri | https://esajournals.onlinelibrary.wiley.com/doi/10.1002/eap.2526 | |
dc.description.abstract | Forest biodiversity conservation and species distribution modeling greatly benefit from broad-scale forest maps depicting tree species or forest types rather than just presence and absence of forest, or coarse classifications. Ideally, such maps would stem from satellite image classification based on abundant field data for both model training and accuracy assessments, but such field data do not exist in many parts of the globe. However, different forest types and tree species differ in their vegetation phenology, offering an opportunity to map and characterize forests based on the seasonal dynamic of vegetation indices and auxiliary data. Our goal was to map and characterize forests based on both land surface phenology and climate patterns, defined here as forest phenoclusters. We applied our methodology in Argentina (2.8 million km2), which has a wide variety of forests, from rainforests to cold-temperate forests. We calculated phenology measures after fitting a harmonic curve of the enhanced vegetation index (EVI) time series derived from 30-m Sentinel 2 and Landsat 8 data from 2018–2019. For climate, we calculated land surface temperature (LST) from Band 10 of the thermal infrared sensor (TIRS) of Landsat 8, and precipitation from Worldclim (BIO12). We performed stratified X-means cluster classifications followed by hierarchical clustering. The resulting clusters separated well into 54 forest phenoclusters with unique combinations of vegetation phenology and climate characteristics. The EVI 90th percentile was more important than our climate and other phenology measures in providing separability among different forest phenoclusters. Our results highlight the potential of combining remotely sensed phenology measures and climate data to improve broad-scale forest mapping for different management and conservation goals, capturing functional rather than structural or compositional characteristics between and within tree species. Our approach results in classifications that go beyond simple forest–nonforest in areas where the lack of detailed ecological field data precludes tree species–level classifications, yet conservation needs are high. Our map of forest phenoclusters is a valuable tool for the assessment of natural resources, and the management of the environment at scales relevant for conservation actions. | eng |
dc.format | application/pdf | es_AR |
dc.language.iso | eng | es_AR |
dc.publisher | Wiley | es_AR |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_AR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | es_AR |
dc.source | Ecological Applications 32 (3) : e2526. (April 2022) | es_AR |
dc.subject | Cluster Sampling | eng |
dc.subject | Muestreo Cluster | es_AR |
dc.subject | Imagery | eng |
dc.subject | Imagen | es_AR |
dc.subject | Precipitation | eng |
dc.subject | Precipitación Atmosférica | es_AR |
dc.subject | Sentinel Plants | es_AR |
dc.subject | Planta Centinela | es_AR |
dc.subject | Argentina | |
dc.subject | Clima | |
dc.subject | Climate | eng |
dc.subject.other | Conservation Enhanced Vegetation Index | eng |
dc.subject.other | Indice de Vegetación Mejorado para la Conservación | es_AR |
dc.subject.other | Land Surface Temperature | eng |
dc.subject.other | Temperatura de la Superficie Terrestre | es_AR |
dc.subject.other | Landsat 8 | eng |
dc.subject.other | Centinel 2 | eng |
dc.subject.other | Centinela 2 | es_AR |
dc.title | Forest phenoclusters for Argentina based on vegetation phenology and climate | es_AR |
dc.type | info:ar-repo/semantics/artículo | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type | info:eu-repo/semantics/publishedVersion | es_AR |
dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | es_AR |
dc.description.origen | Instituto de Recursos Biológicos | |
dc.description.fil | Fil: Silveira, Eduarda M.O. University of Wisconsin–Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos | es_AR |
dc.description.fil | Fil: Radeloff, Volker C. University of Wisconsin–Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos | es_AR |
dc.description.fil | Fil: Martínez-Pastur, Guillermo J. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina | es_AR |
dc.description.fil | Fil: Martinucci, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina | es_AR |
dc.description.fil | Fil: Politi, Natalia. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | es_AR |
dc.description.fil | Fil: Lizarraga, Leonidas. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecoregiones Andinas (INECOA); Argentina | es_AR |
dc.description.fil | Fil: Rivera, Luis. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | es_AR |
dc.description.fil | Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina | es_AR |
dc.description.fil | Fil: Yin, He. Kent State University. Department of Geography; Estados Unidos | es_AR |
dc.description.fil | Fil: Rosas, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC); Argentina | es_AR |
dc.description.fil | Fil: Calamari, Noelia Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina | es_AR |
dc.description.fil | Fil: Navarro, María Fabiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina | es_AR |
dc.description.fil | Fil: Sica, Yanina Vanesa. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. | es_AR |
dc.description.fil | Fil: Olah, Ashley. University of Wisconsin–Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos | es_AR |
dc.description.fil | Fil: Bono, Julieta. Ministerio de Ambiente y Desarrollo Sostenible de la Nación, Dirección Nacional de Bosques, Buenos Aires, Argentina | es_AR |
dc.description.fil | Fil: Pidgeon, Anna M. University of Wisconsin–Madison. Department of Forest and Wildlife Ecology. SILVIS Lab; Estados Unidos | es_AR |
dc.subtype | cientifico |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
common
-
Artículos científicos [198]