Mostrar el registro sencillo del ítem
resumen
Resumen
Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis,
[ver mas...]
dc.contributor.author | Bengoa Luoni, Sofía Ailin | |
dc.contributor.author | Ricci, Riccardo | |
dc.contributor.author | Corzo, Melanie Anahi | |
dc.contributor.author | Hoxha, Genc | |
dc.contributor.author | Melgani, Farid | |
dc.contributor.author | Fernandez, Paula Del Carmen | |
dc.date.accessioned | 2024-08-01T10:18:50Z | |
dc.date.available | 2024-08-01T10:18:50Z | |
dc.date.issued | 2024-07 | |
dc.identifier.issn | 2223-7747 | |
dc.identifier.other | https://doi.org/10.3390/plants13141998 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12123/18739 | |
dc.identifier.uri | https://www.mdpi.com/2223-7747/13/14/1998 | |
dc.description.abstract | Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase. | es_AR |
dc.format | application/pdf | es_AR |
dc.language.iso | eng | es_AR |
dc.publisher | MDPI | es_AR |
dc.relation | info:eu-repograntAgreement/INTA/PNBIO/1131022/AR./Genómica funcional y biología de sistemas. | |
dc.relation | info:eu-repograntAgreement/INTA/PNBIO/1131043/AR./Bioinformática y Estadística Genómica. | |
dc.rights | info:eu-repo/semantics/openAccess | es_AR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | es_AR |
dc.source | Plants 13 (14) : 1998 (July 2024) | es_AR |
dc.subject | Phenology | eng |
dc.subject | Fenología | es_AR |
dc.subject | Senescence | eng |
dc.subject | Avejentamiento | es_AR |
dc.subject | Sunflowers | eng |
dc.subject | Girasol | es_AR |
dc.subject | Machine Learning | eng |
dc.subject | Aprendizaje Automático | es_AR |
dc.title | Sunpheno : a deep neural network for phenological classification of sunflower images | es_AR |
dc.type | info:ar-repo/semantics/artículo | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type | info:eu-repo/semantics/publishedVersion | es_AR |
dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | es_AR |
dc.description.origen | Instituto de Biotecnología | es_AR |
dc.description.fil | Fil: Bengoa Luoni, Sofia Ailin. Wageningen University & Research. Laboratory of Genetics; Países Bajos | es_AR |
dc.description.fil | Fil: Ricci, Riccardo. University of Trento. Department of Information Engineering and Computer Science; Italia | es_AR |
dc.description.fil | Fil: Corzo, Melanie Anahi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina | es_AR |
dc.description.fil | Fil: Corzo, Melanie Anahi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina | es_AR |
dc.description.fil | Fil: Hoxha, Genc. Technische Universität Berlin. Faculty of Electrical Engineering and Computer Science; Alemania | es_AR |
dc.description.fil | Fil: Melgani, Farid. University of Trento. Department of Information Engineering and Computer Science; Italia | es_AR |
dc.description.fil | Fil: Fernandez, Paula Del Carmen. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina | es_AR |
dc.description.fil | Fil: Fernandez, Paula Del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina | es_AR |
dc.subtype | cientifico |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
common
-
Artículos científicos [424]