Mostrar el registro sencillo del ítem

resumen

Resumen
Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five [ver mas...]
dc.contributor.authorYunjun, Yao
dc.contributor.authorShunlin, Liang
dc.contributor.authorYuhu, Zhang
dc.contributor.authorJiquan, Chen
dc.contributor.authorXianglan, Li
dc.contributor.authorKun, Jia
dc.contributor.authorXiaotong, Zhang
dc.contributor.authorFisher, Joshua B.
dc.contributor.authorXuanyu, Wang
dc.contributor.authorLilin, Zhang
dc.contributor.authorJia, Xu
dc.contributor.authorChangliang, Shao
dc.contributor.authorPosse Beaulieu, Gabriela
dc.contributor.authorYingnian, Li
dc.contributor.authorMagliulo, Vincenzo
dc.contributor.authorVarlagin, Andrej
dc.contributor.authorMoors, Eddy J.
dc.contributor.authorBoike, Julia
dc.contributor.authorMacfarlane, Craig
dc.contributor.authorKato, Tomomichi
dc.contributor.authorBuchmann, Nina
dc.contributor.authorBillesbach, D.P.
dc.contributor.authorBeringer, Jason
dc.contributor.authorWolf, Sebastian
dc.contributor.authorPapuga, Shirley A.
dc.contributor.authorWohlfahrt, Georg
dc.contributor.authorMontagnani, Leonardo
dc.contributor.authorArdö, Jonas
dc.contributor.authorPaul-Limoges, Eugénie
dc.contributor.authorEmmel, Carmen
dc.contributor.authorHörtnagl, Lukas
dc.contributor.authorSachs, Torsten
dc.contributor.authorGruening, Carsten
dc.contributor.authorGioli, Beniamino
dc.contributor.authorLópez-Ballesteros, Ana
dc.contributor.authorSteinbrecher, Rainer
dc.contributor.authorGielen, Bert
dc.date.accessioned2017-10-20T14:13:49Z
dc.date.available2017-10-20T14:13:49Z
dc.date.issued2017-10
dc.identifier.issn0022-1694
dc.identifier.otherhttps://doi.org/10.1016/j.jhydrol.2017.08.013
dc.identifier.urihttp://hdl.handle.net/20.500.12123/1551
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022169417305395
dc.description.abstractEstimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models.eng
dc.formatapplication/pdfeng
dc.language.isoeng
dc.rightsinfo:eu-repo/semantics/restrictedAccesseng
dc.sourceJournal of hydrology 553 : 508-526. (October 2017)eng
dc.subjectEvapotranspiración
dc.subjectEvapotranspirationeng
dc.subjectLandsat
dc.subjectImágenes por Satélites
dc.subjectSatellite Imageryeng
dc.subjectDatos Atmosféricos
dc.subjectAtmospheric Dataeng
dc.titleEstimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion methodeng
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/acceptedVersioneng
dc.description.origenInst. de Clima y Agua
dc.gic155061
dc.description.filFil: Yunjun, Yao. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
dc.description.filFil: Shunlin, Liang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
dc.description.filFil: Xianglan, Li. Beijing Normal University. College of Global Change and Earth System Science; China
dc.description.filFil: Yuhu, Zhang. Capital Normal University. College of Resource Environment and Tourism; China
dc.description.filFil: Jiquan, Chen. Michigan State University. CGCEO/Geography; Estados Unidos
dc.description.filFil: Kun, Jia. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
dc.description.filFil: Xiaotong, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
dc.description.filFil: Fisher, Joshua B. California Institute of Technology. Jet Propulsion Laboratory; Estados Unidos
dc.description.filFil: Xuanyu, Wang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
dc.description.filFil: Lilin, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
dc.description.filFil: Jia, Xu. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China
dc.description.filFil: Changliang, Shao. Michigan State University. CGCEO/Geography; Estados Unidos
dc.description.filFil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
dc.description.filFil: Yingnian, Li. Chinese Academy of Sciences. Northwest Institute of Plateau Biology; China
dc.description.filFil: Magliulo, Vincenzo. Consiglio Nazionale delle Ricerche. Institute of Mediterranean Forest and Agricultural Systems; Italia
dc.description.filFil: Varlagin, Andrej. Russian Academy of Sciences. A.N. Severtsov Institute of Ecology and Evolution; Rusia
dc.description.filFil: Moors, Eddy J. Wageningen University and Research, Wageningen Environmental Research; Holanda
dc.description.filFil: Boike, Julia. Alfred Wegener Institute for Polar and Marine Research; Alemania
dc.description.filFil: Macfarlane, Craig. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water; Australia
dc.description.filFil: Kato, Tomomichi. Hokkaido University. Research Faculty of Agriculture; Japón
dc.description.filFil: Buchmann, Nina. ETH Zurich. Department of Environmental Systems Science; Suiza
dc.description.filFil: Billesbach, D.P. University of Nebraska. Department of Biological Systems Engineering and School of Natural Resources; Estados Unidos
dc.description.filFil: Beringer, Jason. University of Western Australia. School of Agriculture and Environment; Australia
dc.description.filFil: Wolf, Sebastian. ETH Zurich. Department of Environmental Systems Science; Suiza
dc.description.filFil: Papuga, Shirley A. University of Arizona. School of Natural Resources and the Environment; Estados Unidos
dc.description.filFil: Wohlfahrt, Georg. University of Innsbruck. Institute of Ecology; Austria
dc.description.filFil: Montagnani, Leonardo. Free University of Bolzano. Faculty of Science and Technology; Italia
dc.description.filFil: Ardö, Jonas. Lund University. Physical Geography and Ecosystem Science; Suecia
dc.description.filFil: Paul-Limoges, Eugénie. ETH Zurich. Department of Environmental Systems Science; Suiza
dc.description.filFil: Emmel, Carmen. ETH Zurich. Department of Environmental Systems Science; Suiza
dc.description.filFil: Hörtnagl, Lukas. ETH Zurich. Department of Environmental Systems Science; Suiza
dc.description.filFil: Sachs, Torsten. GFZ German Research Centre for Geosciences, Section Remote Sensing; Alemania
dc.description.filFil: Gruening, Carsten. European Commission, Joint Research Centre; Italia
dc.description.filFil: Gioli, Beniamino. National Research Council. Institute of Biometeorology; Italia
dc.description.filFil: López-Ballesteros, Ana. University of Granada. Faculty of Sciences. Department of Ecology; España
dc.description.filFil: Steinbrecher, Rainer. Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU); Alemania
dc.description.filFil: Gielen, Bert. University of Antwerp. Department of Biology. Centre of Excellence PLECO; Bélgica
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem