Mostrar el registro sencillo del ítem

resumen

Resumen
Optical Earth Observation is often limited by weather conditions such as cloudiness. Radar sensors have the potential to overcome these limitations, however, due to the complex radar-surface interaction, the retrieving of crop biophysical variables using this technology remains an open challenge. Aiming to simultaneously benefit from the optical domain background and the all-weather imagery provided by radar systems, we propose a data fusion approach [ver mas...]
dc.contributor.authorCaballero, Gabriel
dc.contributor.authorPezzola, Nestor Alejandro
dc.contributor.authorWinschel, Cristina Ines
dc.contributor.authorSanchez Angonova, Paolo Andres
dc.contributor.authorCasella, Alejandra An
dc.contributor.authorOrden, Luciano
dc.contributor.authorSalinero-Delgado, Matías
dc.contributor.authorReyes-Muñoz, Pablo
dc.contributor.authorBerger, Katja
dc.contributor.authorDelegido, Jesús
dc.contributor.authorVerrelst, Jochem
dc.date.accessioned2023-04-03T12:14:52Z
dc.date.available2023-04-03T12:14:52Z
dc.date.issued2023-03
dc.identifier.issn2072-4292
dc.identifier.otherhttps://doi.org/10.3390/rs15071822
dc.identifier.urihttp://hdl.handle.net/20.500.12123/14389
dc.identifier.urihttps://www.mdpi.com/2072-4292/15/7/1822
dc.description.abstractOptical Earth Observation is often limited by weather conditions such as cloudiness. Radar sensors have the potential to overcome these limitations, however, due to the complex radar-surface interaction, the retrieving of crop biophysical variables using this technology remains an open challenge. Aiming to simultaneously benefit from the optical domain background and the all-weather imagery provided by radar systems, we propose a data fusion approach focused on the cross-correlation between radar and optical data streams. To do so, we analyzed several multiple-output Gaussian processes (MOGP) models and their ability to fuse efficiently Sentinel-1 (S1) Radar Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a dry agri-environment in southern Argentina. MOGP models not only exploit the auto-correlations of S1 and S2 data streams independently but also the inter-channel cross-correlations. The S1 RVI and S2 VWC time series at the selected study sites being the inputs of the MOGP models proved to be closely correlated. Regarding the set of assessed models, the Convolutional Gaussian model (CONV) delivered noteworthy accurate data fusion results over winter wheat croplands belonging to the 2020 and 2021 campaigns (NRMSEwheat2020 = 16.1%; NRMSEwheat2021 = 10.1%). Posteriorly, we removed S2 observations from the S1 & S2 dataset corresponding to the complete phenological cycles of winter wheat from September to the end of December to simulate the presence of clouds in the scenes and applied the CONV model at the pixel level to reconstruct spatiotemporally-latent VWC maps. After applying the fusion strategy, the phenology of winter wheat was successfully recovered in the absence of optical data. Strong correlations were obtained between S2 VWC and S1 & S2 MOGP VWC reconstructed maps for the assessment dates (R2¯¯¯¯wheat−2020 = 0.95, R2¯¯¯¯wheat−2021 = 0.96). Altogether, the fusion of S1 SAR and S2 optical EO data streams with MOGP offers a powerful innovative approach for cropland trait monitoring over cloudy high-latitude regions.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherMDPIes_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/es_AR
dc.sourceRemote Sensing 15 (7) : 1822 (March 2023)es_AR
dc.subjectImágenes por Satéliteses_AR
dc.subjectSatellite Imageryeng
dc.subjectIndice de Vegetaciónes_AR
dc.subjectVegetation Indexeng
dc.subjectContenido de Humedades_AR
dc.subjectMoisture Contenteng
dc.subjectTeledetecciónes_AR
dc.subjectRemote Sensingeng
dc.subjectNubeses_AR
dc.subjectCloudseng
dc.subject.otherSentinel-1es_AR
dc.subject.otherSentinel-2es_AR
dc.titleSynergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processeses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)es_AR
dc.description.origenEEA Hilario Ascasubies_AR
dc.description.filFil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); Españaes_AR
dc.description.filFil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentinaes_AR
dc.description.filFil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentinaes_AR
dc.description.filFil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentinaes_AR
dc.description.filFil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentinaes_AR
dc.description.filFil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentinaes_AR
dc.description.filFil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; Españaes_AR
dc.description.filFil: Salinero-Delgado, Matías. University of Valencia. Image Processing Laboratory (IPL); Españaes_AR
dc.description.filFil: Reyes-Muñoz, Pablo. University of Valencia. Image Processing Laboratory (IPL); Españaes_AR
dc.description.filFil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); Españaes_AR
dc.description.filFil: Berger, Katja. Mantle Labs GmbH; Austriaes_AR
dc.description.filFil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); Españaes_AR
dc.description.filFil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); Españaes_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess