Mostrar el registro sencillo del ítem
resumen
Resumen
Optical Earth Observation is often limited by weather conditions such as cloudiness. Radar sensors have the potential to overcome these limitations, however, due to the complex radar-surface interaction, the retrieving of crop biophysical variables using this technology remains an open challenge. Aiming to simultaneously benefit from the optical domain background and the all-weather imagery provided by radar systems, we propose a data fusion approach
[ver mas...]
dc.contributor.author | Caballero, Gabriel | |
dc.contributor.author | Pezzola, Nestor Alejandro | |
dc.contributor.author | Winschel, Cristina Ines | |
dc.contributor.author | Sanchez Angonova, Paolo Andres | |
dc.contributor.author | Casella, Alejandra An | |
dc.contributor.author | Orden, Luciano | |
dc.contributor.author | Salinero-Delgado, Matías | |
dc.contributor.author | Reyes-Muñoz, Pablo | |
dc.contributor.author | Berger, Katja | |
dc.contributor.author | Delegido, Jesús | |
dc.contributor.author | Verrelst, Jochem | |
dc.date.accessioned | 2023-04-03T12:14:52Z | |
dc.date.available | 2023-04-03T12:14:52Z | |
dc.date.issued | 2023-03 | |
dc.identifier.issn | 2072-4292 | |
dc.identifier.other | https://doi.org/10.3390/rs15071822 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12123/14389 | |
dc.identifier.uri | https://www.mdpi.com/2072-4292/15/7/1822 | |
dc.description.abstract | Optical Earth Observation is often limited by weather conditions such as cloudiness. Radar sensors have the potential to overcome these limitations, however, due to the complex radar-surface interaction, the retrieving of crop biophysical variables using this technology remains an open challenge. Aiming to simultaneously benefit from the optical domain background and the all-weather imagery provided by radar systems, we propose a data fusion approach focused on the cross-correlation between radar and optical data streams. To do so, we analyzed several multiple-output Gaussian processes (MOGP) models and their ability to fuse efficiently Sentinel-1 (S1) Radar Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a dry agri-environment in southern Argentina. MOGP models not only exploit the auto-correlations of S1 and S2 data streams independently but also the inter-channel cross-correlations. The S1 RVI and S2 VWC time series at the selected study sites being the inputs of the MOGP models proved to be closely correlated. Regarding the set of assessed models, the Convolutional Gaussian model (CONV) delivered noteworthy accurate data fusion results over winter wheat croplands belonging to the 2020 and 2021 campaigns (NRMSEwheat2020 = 16.1%; NRMSEwheat2021 = 10.1%). Posteriorly, we removed S2 observations from the S1 & S2 dataset corresponding to the complete phenological cycles of winter wheat from September to the end of December to simulate the presence of clouds in the scenes and applied the CONV model at the pixel level to reconstruct spatiotemporally-latent VWC maps. After applying the fusion strategy, the phenology of winter wheat was successfully recovered in the absence of optical data. Strong correlations were obtained between S2 VWC and S1 & S2 MOGP VWC reconstructed maps for the assessment dates (R2¯¯¯¯wheat−2020 = 0.95, R2¯¯¯¯wheat−2021 = 0.96). Altogether, the fusion of S1 SAR and S2 optical EO data streams with MOGP offers a powerful innovative approach for cropland trait monitoring over cloudy high-latitude regions. | eng |
dc.format | application/pdf | es_AR |
dc.language.iso | eng | es_AR |
dc.publisher | MDPI | es_AR |
dc.rights | info:eu-repo/semantics/openAccess | es_AR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | es_AR |
dc.source | Remote Sensing 15 (7) : 1822 (March 2023) | es_AR |
dc.subject | Imágenes por Satélites | es_AR |
dc.subject | Satellite Imagery | eng |
dc.subject | Indice de Vegetación | es_AR |
dc.subject | Vegetation Index | eng |
dc.subject | Contenido de Humedad | es_AR |
dc.subject | Moisture Content | eng |
dc.subject | Teledetección | es_AR |
dc.subject | Remote Sensing | eng |
dc.subject | Nubes | es_AR |
dc.subject | Clouds | eng |
dc.subject.other | Sentinel-1 | es_AR |
dc.subject.other | Sentinel-2 | es_AR |
dc.title | Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes | es_AR |
dc.type | info:ar-repo/semantics/artículo | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type | info:eu-repo/semantics/publishedVersion | es_AR |
dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | es_AR |
dc.description.origen | EEA Hilario Ascasubi | es_AR |
dc.description.fil | Fil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); España | es_AR |
dc.description.fil | Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina | es_AR |
dc.description.fil | Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina | es_AR |
dc.description.fil | Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina | es_AR |
dc.description.fil | Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina | es_AR |
dc.description.fil | Fil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina | es_AR |
dc.description.fil | Fil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; España | es_AR |
dc.description.fil | Fil: Salinero-Delgado, Matías. University of Valencia. Image Processing Laboratory (IPL); España | es_AR |
dc.description.fil | Fil: Reyes-Muñoz, Pablo. University of Valencia. Image Processing Laboratory (IPL); España | es_AR |
dc.description.fil | Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España | es_AR |
dc.description.fil | Fil: Berger, Katja. Mantle Labs GmbH; Austria | es_AR |
dc.description.fil | Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España | es_AR |
dc.description.fil | Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España | es_AR |
dc.subtype | cientifico |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
common