Ver ítem
- xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCIRN. Centro de Investigaciones de Recursos NaturalesInstituto de Recursos BiológicosArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros e Institutos de Investigación
- CIRN. Centro de Investigaciones de Recursos Naturales
- Instituto de Recursos Biológicos
- Artículos científicos
- Ver ítem
Multiple‑trait analyses improved the accuracy of genomic prediction and the power of genome‑wide association of productivity and climate change‑adaptive traits in lodgepole pine
Resumen
Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought
[ver mas...]
Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP
methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values fromn the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias.
[Cerrar]
Autor
Cappa, Eduardo Pablo;
Chen, Charles;
Klutsch, Jennifer G.;
Sebastian-Azcona, Jaime;
Ratcliffe, Blaise;
Wei, Xiaojing;
Da Ros, Letitia;
Ullan, Aziz;
Liu, Yang;
Bernowicz, Andy;
Sadoway, Shane;
Mansfield, Shawn D.;
Erbilgin, Nadir;
Thomas, Barb R.;
El-Kassaby, Yousry A.;
Fuente
BMC Genomics 23 : Article number: 536 (2022)
Fecha
2022-07-23
Editorial
BMC
ISSN
1976-9571
2092-9293
2092-9293
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Abierto
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)