Mostrar el registro sencillo del ítem

resumen

Resumen
Our ability to develop strategies to mitigate climate change includes an understanding of, and our capacity to predict soil organic carbon (SOC) dynamics in livestock systems. Here we assess the capability of the Sustainable Grazing System (SGS) Pasture Model for predicting pasture growth (elongated wheatgrass, Thinopyrum ponticum) and SOC accumulation in different environments and under a range of pasture management practices in hydrohalomorphic soils [ver mas...]
dc.contributor.authorSchimpf, Karen Gisele
dc.contributor.authorErrecart, Pedro Manuel
dc.contributor.authorCanziani, Graciela Ana
dc.date.accessioned2023-02-14T14:10:46Z
dc.date.available2023-02-14T14:10:46Z
dc.date.issued2022-09-13
dc.identifier.issn0142-5242 (print)
dc.identifier.issn1365-2494 (online)
dc.identifier.otherhttps://doi.org/10.1111/gfs.12580
dc.identifier.urihttp://hdl.handle.net/20.500.12123/13972
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1111/gfs.12580
dc.description.abstractOur ability to develop strategies to mitigate climate change includes an understanding of, and our capacity to predict soil organic carbon (SOC) dynamics in livestock systems. Here we assess the capability of the Sustainable Grazing System (SGS) Pasture Model for predicting pasture growth (elongated wheatgrass, Thinopyrum ponticum) and SOC accumulation in different environments and under a range of pasture management practices in hydrohalomorphic soils located in South-eastern Buenos Aires Province, Argentina. After Model calibration, aerial net primary productivity (ANPP) and TSOC content under two grazing intensities (7.5 and 11 cm post-grazing target heights) and two N fertilization levels (0 and 100 kg N ha−1 yr−1) were simulated over a 10 year-period. The SGS Pasture Model predicted 87% of the observed ANPP, with observed and predicted ANPPs averaging 1.46 and 1.42 Mg ha−1 yr−1, respectively. There were differences in simulated ANPP between fertilized and unfertilized treatments both at high and low grazing intensities for the last year of the period. Total SOC contents from the modelling showed differences between high (83.7 to 84.2 Mg ha−1) and low (86.8 to 87.5 Mg ha−1) grazing intensities, with treatments receiving N also showing higher carbon stocks. The positive effect of reduced grazing intensity on soil carbon was explained by an increased input of aerial and subterranean dry matter into the soil. Sensitivity analysis showed that SGS is a robust model, capable of performing effectively under a variety of conditions. Hence, it can be used for exploring management practices to mitigate the impact of livestock systems on emissions and SOC stocks.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherWileyes_AR
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_AR
dc.sourceGrass and Forage Science : 1-13 (First published: 13 September 2022)es_AR
dc.subjectModelizaciónes_AR
dc.subjectModellingeng
dc.subjectCarbono Orgánico del Sueloes_AR
dc.subjectSoil Organic Carboneng
dc.subjectManejo de Praderases_AR
dc.subjectGrassland Managementeng
dc.subjectSistemas Pecuarios
dc.subjectLivestock Systemseng
dc.subject.otherPastoes_AR
dc.titleModelling pasture management practices for soil organic carbon gain in livestock systemses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.description.origenEEA Balcarcees_AR
dc.description.filFil: Schimpf, Karen Gisele. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas; Argentina. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable; Argentina.es_AR
dc.description.filFil: Schimpf, Karen Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.es_AR
dc.description.filFil: Errecart, Pedro Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.es_AR
dc.description.filFil: Canziani, Graciela Ana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas; Argentina. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable; Argentina.es_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem