Mostrar el registro sencillo del ítem

resumen

Resumen
The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more [ver mas...]
dc.contributor.authorGraesser, Jordan
dc.contributor.authorStanimirova, Radost
dc.contributor.authorTarrio, Katelyn
dc.contributor.authorCopati, Esteban J.
dc.contributor.authorVolante, Jose Norberto
dc.contributor.authorVeron, Santiago Ramón
dc.contributor.authorBanchero, Santiago
dc.contributor.authorElena, Hernan Javier
dc.contributor.authorDe Abelleyra, Diego
dc.contributor.authorFriedl, Mark A.
dc.date.accessioned2022-09-07T13:30:46Z
dc.date.available2022-09-07T13:30:46Z
dc.date.issued2022-08
dc.identifier.issn2072-4292
dc.identifier.otherhttps://doi.org/10.3390/rs14164005
dc.identifier.urihttp://hdl.handle.net/20.500.12123/12812
dc.identifier.urihttps://www.mdpi.com/2072-4292/14/16/4005
dc.description.abstractThe impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherMDPIes_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceRemote Sensing 14 (16) : 4005. (August 2022)es_AR
dc.subjectCobertura de Sueloses_AR
dc.subjectLand Covereng
dc.subjectAlteración de la Cubierta Vegetales_AR
dc.subjectLand Cover Changeeng
dc.subjectLandsateng
dc.subjectTeledetecciónes_AR
dc.subjectRemote Sensingeng
dc.subjectImágenes por Satéliteses_AR
dc.subjectSatellite Imageryeng
dc.subjectAmérica del Sures_AR
dc.subjectSouth Americaeng
dc.subject.otherImágenes de Landsates_AR
dc.titleTemporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South Americaes_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.description.origenEEA Saltaes_AR
dc.description.filFil: Graesser, Jordan. Boston University. Department of Earth and Environment; Estados Unidoses_AR
dc.description.filFil: Stanimirova, Radost. Boston University. Department of Earth and Environment; Estados Unidoses_AR
dc.description.filFil: Tarrio, Katelyn. Boston University. Department of Earth and Environment; Estados Unidoses_AR
dc.description.filFil: Copati, Esteban J. Bolsa de Cereales (Buenos Aires); Argentinaes_AR
dc.description.filFil: Volante, J. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentinaes_AR
dc.description.filFil: Verón, S. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentinaes_AR
dc.description.filFil: Verón, Sebastian. Universidad de Buenos Aires. Facultad de Agronomía; Argentinaes_AR
dc.description.filFil: Verón, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes_AR
dc.description.filFil: Banchero, S. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentinaes_AR
dc.description.filFil: Elena, Hernan Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentinaes_AR
dc.description.filFil: Abelleyra, D. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentinaes_AR
dc.description.filFil: Friedl, Mark A. Boston University. Department of Earth and Environment; Estados Unidoses_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess