Mostrar el registro sencillo del ítem
resumen
Resumen
The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more
[ver mas...]
dc.contributor.author | Graesser, Jordan | |
dc.contributor.author | Stanimirova, Radost | |
dc.contributor.author | Tarrio, Katelyn | |
dc.contributor.author | Copati, Esteban J. | |
dc.contributor.author | Volante, Jose Norberto | |
dc.contributor.author | Veron, Santiago Ramón | |
dc.contributor.author | Banchero, Santiago | |
dc.contributor.author | Elena, Hernan Javier | |
dc.contributor.author | De Abelleyra, Diego | |
dc.contributor.author | Friedl, Mark A. | |
dc.date.accessioned | 2022-09-07T13:30:46Z | |
dc.date.available | 2022-09-07T13:30:46Z | |
dc.date.issued | 2022-08 | |
dc.identifier.issn | 2072-4292 | |
dc.identifier.other | https://doi.org/10.3390/rs14164005 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12123/12812 | |
dc.identifier.uri | https://www.mdpi.com/2072-4292/14/16/4005 | |
dc.description.abstract | The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods. | eng |
dc.format | application/pdf | es_AR |
dc.language.iso | eng | es_AR |
dc.publisher | MDPI | es_AR |
dc.rights | info:eu-repo/semantics/openAccess | es_AR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | Remote Sensing 14 (16) : 4005. (August 2022) | es_AR |
dc.subject | Cobertura de Suelos | es_AR |
dc.subject | Land Cover | eng |
dc.subject | Alteración de la Cubierta Vegetal | es_AR |
dc.subject | Land Cover Change | eng |
dc.subject | Landsat | eng |
dc.subject | Teledetección | es_AR |
dc.subject | Remote Sensing | eng |
dc.subject | Imágenes por Satélites | es_AR |
dc.subject | Satellite Imagery | eng |
dc.subject | América del Sur | es_AR |
dc.subject | South America | eng |
dc.subject.other | Imágenes de Landsat | es_AR |
dc.title | Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America | es_AR |
dc.type | info:ar-repo/semantics/artículo | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type | info:eu-repo/semantics/publishedVersion | es_AR |
dc.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
dc.description.origen | EEA Salta | es_AR |
dc.description.fil | Fil: Graesser, Jordan. Boston University. Department of Earth and Environment; Estados Unidos | es_AR |
dc.description.fil | Fil: Stanimirova, Radost. Boston University. Department of Earth and Environment; Estados Unidos | es_AR |
dc.description.fil | Fil: Tarrio, Katelyn. Boston University. Department of Earth and Environment; Estados Unidos | es_AR |
dc.description.fil | Fil: Copati, Esteban J. Bolsa de Cereales (Buenos Aires); Argentina | es_AR |
dc.description.fil | Fil: Volante, J. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina | es_AR |
dc.description.fil | Fil: Verón, S. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina | es_AR |
dc.description.fil | Fil: Verón, Sebastian. Universidad de Buenos Aires. Facultad de Agronomía; Argentina | es_AR |
dc.description.fil | Fil: Verón, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina | es_AR |
dc.description.fil | Fil: Banchero, S. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina | es_AR |
dc.description.fil | Fil: Elena, Hernan Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina | es_AR |
dc.description.fil | Fil: Abelleyra, D. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina | es_AR |
dc.description.fil | Fil: Friedl, Mark A. Boston University. Department of Earth and Environment; Estados Unidos | es_AR |
dc.subtype | cientifico |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
common
-
Artículos científicos [132]